当前位置: 初中数学 /人教版(2024) /九年级上册 /第二十四章 圆 /24.1 圆的有关性质
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

(人教版)2023-2024学年九年级数学上册 24.1 ...

更新时间:2023-11-07 浏览次数:49 类型:同步测试
一、选择题
  • 1. (2023九上·昆明月考) 如图,的弦,半径为圆周上一点,若所对应圆心角的度数为 , 则的度数为( )

    A . B . C . D .
  • 2. 如图,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时位于弧AB上,此时∠AOE=56°,则α的度数是( ).

    A . 52° B . 60° C . 72° D . 76°
  • 3. 如图,BC是半圆O的直径,D,E是上两点,连结BD,CE并延长,交于点A,连结OD,OE.若∠A=70° ,则∠DOE的度数为( ).

    A . 35° B . 38° C . 40° D . 42°
  • 4. 数学课上,老师让学生用尺规作图作Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法能判断∠ACB是直角的依据是( ).

    A . 勾股定理 B . 直径所对的圆周角是直角 C . 勾股定理的逆定理 D . 90°的圆周角所对的弦是直径
  • 5. 如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连结OA,OB,BC.若∠ABC= 20°,则∠AOB的度数是( ).

    A . 40° B . 50° C . 70° D . 80°
  • 6. 已知∠ADB,作图:

    步骤1:以点D为圆心,适当长为半径作弧,分别交DA,DB于点M,N;再分别以点M,N为圆心,大于MN长为半径作弧,交于点E ,作射线DE.

    步骤2:在DB上任取一点O,以点O为圆心,OD长为半径作半圆,分别交DA,DB,DE于点P,Q,C.

    步骤3:连结PQ,OC.

    有下列判断:

     ;②OC∥DA ;③DP= PQ;④OC垂直平分PQ.

    其中正确的有( ).

    A . ①③④ B . ①②④ C . ②③④ D . ①②③④
  • 7. 如图,BC是⊙O的直径,A是⊙O上的一点.若∠OAC=32°,则∠B的度数是( ).

    A . 58° B . 60° C . 64° D . 68°
  • 8. 如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上一点.若∠BOC=40° ,则∠D的度数为( ).

    A . 100° B . 110° C . 120° D . 130°
  • 9. 已知点O是△ABC的外心,∠BOC= 80°,则∠BAC的度数为( ).
    A . 40° B . 100° C . 40°或140° D . 40或100°
  • 10. 已知四边形ABCD内接于圆,则∠A,∠B,∠C,∠D的度数比可能是( ).
    A . 1:2:3:4 B . 7:5:10:8 C . 13:1 :5:17 D . 1:3:2:4
二、填空题
  • 11. 如图,四边形ABDC是⊙O的内接四边形,∠BOC=110°,则∠BDC的大小为

  • 12. 如图,EF是⊙O的直径,把∠A为45°的直角三角尺ABC的一条直角边BC放在直线EF上,斜边AB所在直线与⊙O交于点P,点B,O重合,且AC大于OE.将三角尺ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x°,则x的取值范围是

  • 13. 如图,在△ABC中,∠ACB= 130°,∠BAC=20°,BC=2.以C为圆心,CB为半径的圆交AB于点D,则BD的长为

  • 14. 如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点D.若BC=3,AB=5,则OD的长为

  • 15. 小敏利用课余时间制作了一个脸盆架,如图①所示,图②是脸盆架的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40 cm,脸盆的最低点C到AB的距离为10cm,则该脸盆的半径为cm.

三、解答题
四、综合题

微信扫码预览、分享更方便

试卷信息