当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省金华市义乌部分校2023-2024学年九年级上学期数学...

更新时间:2024-04-19 浏览次数:29 类型:月考试卷
一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项.不选、多选、错选均不给分)
二、填空题(本大题有6小题,每小题4分,共24分.)
三、解答题(本大题有8小题,共66分.)
  • 19. (2023九上·义乌月考) 同学们在做题时,经常用到“在直角三角形中,角所对的直角边等于斜边的一半”这个定理,下面是两种添加辅助线的证明方法,请你选择一种进行证明.

    已知:在中,

    求证:.

    方法一:如图1,在AB上取一点 , 使得 , 连接CD.

    方法二:如图2,延长BC到 , 使得 , 连接AD.

    我选择方法        ▲    .

    证明:

  • 20. (2024九上·婺城期末) 如图,在路边安装路灯,灯柱BC高10m,与灯杆AB的夹角ABC为.路灯采用锥形灯罩,照射范围DE长为9.8m,从D、E两处测得路灯的仰角分别为.

    (参考数据:)求:

    1. (1) 路灯离地面的高度(即点到地面CE的距离);
    2. (2) 灯杆AB的长度.
  • 21. (2023九上·义乌月考) 某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.
    a.这30名学生第一次竞赛成绩;
    b.这30名学生两次知识竞赛的获奖情况统计表和第二次竞赛成绩得分情况统计图:(规定:分数≥90,获卓越奖;85≤分数<90,获优秀奖;分数<85,获参与奖)

    (规定:分数≥90,获卓越奖;85≤分数<90,获优秀奖;分数<85,获参与奖)
     参与奖优秀奖卓越奖
    第一次竞赛人数101010
    平均分828795
    第二次竞赛人数21216
    平均分848793
    c.第二次竞赛获卓越奖的学生成绩如下:90,90,91,91,91,91,92,93,93,94,94,94,95,95,96,98.
    d.两次竞赛成绩样本数据的平均数、中位数、众数如表:
     平均数中位数众数
    第一次竞赛m87.588
    第二次竞赛90n91
    根据以上信息,回答下列问题:
    1. (1) 小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“O”圈出代表小松同学的点;
    2. (2) 直接写出m,n的值;
    3. (3) 请判断第几次竞赛中初三年级全体学生的成绩水平较高,并说明理由.
  • 22. (2023九上·婺城月考) 如图,有两个同心半圆AC和半圆BD,其中半圆BD固定不动,半圆AC绕圆心沿顺时针方向转动一周,连接AB、CD,转动过程中,半圆BD与线段AC的交点记为点 , 若.

    1. (1) 求证:
    2. (2) 在转动过程中,求面积的最大值;
    3. (3) 当AB与半圆BD相切时,求弧DH的长.
  • 23. (2024九上·婺城期末) 在平面直角坐标系xOy中,有抛物线.
    1. (1) 若点在抛物线上,

      ①求抛物线的对称轴;

      ②若点也在抛物线上,求的取值范围;

    2. (2) 当时,有已知点 , 若抛物线与线段AB只有一个公共点,结合函数图象,求的取值范围.
  • 24. (2023九上·义乌月考) 请根据素材,完成任务.

    素材一

    如图,在Rt中, , 垂足为点 , 若保证始终为直角,则点A、B、C在以AB为直径的圆上.

    素材二

    如图,在Rt△ABC中, , 垂足为点 , 取AB的中点 , 连接OC,根据“直角三角形斜边上的中线等于斜边的一半”可知 , 可得OC≥CD.

    素材三

    如图,矩形ABCD是某实验室侧截面示意图,现需要在室内安装一块长1米的遮光板EF,且EF//AB,点到墙AB的距离为4米,到地面BC的距离为5米.点O为室内光源,OM、ON为光线, , 通过调节光源的位置,可以改变背光工作区的大小.若背光工作区BM+BN的和最大时,该实验室“可利用比”最高.

    任务一

    若素材一中的AB=4,求CD的最大值.

     

    任务二

    若素材二中的CD=6,求AB的最小值.

     

    任务三

    若任务二中的∠ACB=90°改成∠ACB=60°,其余条件不变,请直接写出AB的最小值.

    任务四

    若任务二中的∠ACB=90°,CD=6改成∠ACB=α,CD=m,请直接出AB的最小值.

     

    任务五

    当素材三中的实验室“可利用比”最高,求此时BM+BN的值

     

微信扫码预览、分享更方便

试卷信息