一、单选题(本题共8小题,每小题5分,共40分;在每小题给出的四个选项中,只有一个是符合要求的.)
-
-
-
-
-
A . (﹣∞,0)
B . (0,+∞)
C . (﹣∞,1]
D . [1,+∞)
-
6.
(2023高一上·荣昌月考)
通过加强对野生动物的栖息地保护和拯教繁育,某濒危野生动物的数量不断增长,根据调查研究,该野生动物的数量
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EN%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Et%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3EK%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3Ee%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E.%3C%2Fmn%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Et%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E.%3C%2Fmn%3E%3Cmn%3E8%3C%2Fmn%3E%3Cmn%3E8%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
(t的单位:年),其中K为栖息地所能承受该野生动物的最大数量.当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EN%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Et%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmo%3E%E2%88%97%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E.%3C%2Fmn%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmi%3EK%3C%2Fmi%3E%3C%2Fmath%3E)
时,该野生动物的濒危程度降到较为安全的级別,此时
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Et%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmo%3E%E2%88%97%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
约为(
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3El%3C%2Fmn%3E%3Cmn%3En%3C%2Fmn%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmo%3E%E2%89%88%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E.%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
)( )
A . 9
B . 10
C . 11
D . 12
-
-
A .
B .
C . 6
D . 9
二、nbsp;、多选题(本小题共四小题,每小题5分,共20分.在每个小题给出的四个选项中,有多个符合要求的选项,全部选对得5分,部分选对得2分,有选错的得0分)
-
-
A . 函数
与
是同一函数
B . 函数
是定义在
上的奇函数,若
时,
, 则
时,
C . 不等式
的解集是
D . 设a,
, 则“
”是“
”的必要不充分条件
-
-
三、填空题(本题共4个小题,每小题5分,共20分)
四、nbsp;、解答题(共 70分,本题共6小题,第17题10分,其余每小题12分)
-
-
(1)
-
(2)
-
-
(1)
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
为空集,求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmath%3E)
得取值范围;
-
(2)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmo%3E%E2%8A%87%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
, 求m的取值范围.
-
-
(1)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmath%3E)
的值及
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ef%3C%2Fmi%3E%3Cmfenced%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmath%3E)
的定义城;
-
(2)
判断
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ef%3C%2Fmi%3E%3Cmfenced%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmath%3E)
的奇偶性,并给出证明;
-
(3)
求函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ef%3C%2Fmi%3E%3Cmfenced%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmath%3E)
在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfenced+open%3D%22%5B%22+close%3D%22%5D%22%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmath%3E)
上的值域.
-
-
(1)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
的解析式;
-
(2)
若函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%88%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmtext%3E%E2%88%9E%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
是否存在实数a,使得
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
最小值为5?若存在,求出a的值;若不存在,说明理由
-
21.
(2023高一上·荣昌月考)
为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业.经过调查,生产某小型电子产品需投入年固定成本5万元,每年生产x万件,需另投入流动成本C(x)万元,且C(x)=
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmrow%3E%3Cmtable+columnalign%3D%22left%22%3E%3Cmtr+columnalign%3D%22left%22%3E%3Cmtd+columnalign%3D%22left%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmtext%3E%E2%80%83%3C%2Fmtext%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmn%3E8%3C%2Fmn%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3Cmtr+columnalign%3D%22left%22%3E%3Cmtd+columnalign%3D%22left%22%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmn%3E9%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmtext%3E%E2%80%83%3C%2Fmtext%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%89%A5%3C%2Fmo%3E%3Cmn%3E8%3C%2Fmn%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3C%2Fmtable%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
每件产品售价为10元,经分析,生产的产品当年能全部售完.
-
(1)
写出年利润P(x)(万元)关于年产量x(万件)的函数解析式(年利润=年销售收入-固定成本-流动成本).
-
(2)
年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?
-
-
(1)
求实数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmath%3E)
的值;
-
(2)
试判断
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的单调性,并用定义证明;
-
(3)
若关于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
的不等式
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ef%3C%2Fmi%3E%3Cmo%3E%EF%BC%88%3C%2Fmo%3E%3Cmo%3E%EF%BC%88%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmsup%3E%3Cmo%3E%EF%BC%89%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3C%2Fmsup%3E%3Cmo%3E%EF%BC%89%3C%2Fmo%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ef%3C%2Fmi%3E%3Cmo%3E%EF%BC%88%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmi+mathvariant%3D%22normal%22%3Ek%3C%2Fmi%3E%3Cmo%3E%C2%B7%3C%2Fmo%3E%3Cmo%3E%EF%BC%88%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmsup%3E%3Cmo%3E%EF%BC%89%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3C%2Fmsup%3E%3Cmo%3E%EF%BC%89%3C%2Fmo%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3ER%3C%2Fmi%3E%3C%2Fmath%3E)
上有解,求实数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ek%3C%2Fmi%3E%3C%2Fmath%3E)
的取值范围.