当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省台州市2024年中考一模数学试卷

更新时间:2024-04-25 浏览次数:210 类型:中考模拟
一、选择题(本题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)
二、填空题(本题共6小题,每小题4分,共24分)
三、解答题(本题共8小题,第17~19题每小题6分,第20,21题每小题8分,第22,23题每小题10分,第24题12分,共66分)
    1. (1) 计算:.
    2. (2) 解不等式组:
  • 18. (2024九下·台州月考) 作图:如图,请用圆规和无刻度的直尺作出Rt△ABC中斜边AC上的中线BO.(保留作图痕迹,不要求写作法)

  • 19. (2024·台州模拟) 光从空气射入液体会发生折射现象. 如图,水平放置的容器中装有某种液体,光线AO斜射到液面发生折射,折射光线为OB,折射角为∠BOD,测得∠BOD=20°,OD⊥BD,OD=10 cm,求折射光线OB的长.(结果精确到0.1 cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36.) 

  • 20. (2024九下·台州月考) 下图是某市轻轨列车两站之间行驶速度v(米/秒)与行驶时间t(秒)之间的函数图象,已知点A(90,40),点B(230,40),点C(270,0).

    1. (1) 求线段BC的函数解析式.
    2. (2) 求这两站之间列车速度不低于30米/秒的行驶时间.
  • 21. (2024·台州模拟) 如图,在正方形ABCD中,以BC为边在正方形内部作等边△BCE,CE与正方形的对角线BD交于点F,连接DE.

    1. (1) 求∠DEC的度数.
    2. (2) 求证:DE2=EF·EC.
  • 22. (2024·台州模拟) 某饲料生产厂家为了比较1号、2号两种鱼饲料的喂养效果,选出重量基本相同的某种鱼苗360条放养到A,B两个水池,其中A水池200条,B水池160条.在养殖环境、喂料方式等都大致相同的条件下,A水池的鱼用1号饲料喂养,B水池的鱼用2号饲料喂养.假设放养的鱼苗全部成活,且总条数不变,经过12个月后,在A水池、B水池中各随机抽取10条鱼分别进行称重,得到A水池鱼的重量数据(单位:kg):4.5,3.8,3.7,5.3,3.6,3.7,4.9,4.5,3.7,3.6;B水池鱼的重量数据(单位:kg):3.6,3.5,4.4,3.7,3.9,3.4,4.5,3.6,3.3,3.2.
    1. (1) 你认为1号、2号饲料哪种喂养效果好?请说明理由.
    2. (2) 若要求鱼的重量超过4.0 kg才可以出售,估计此时这360条鱼中符合出售标准的鱼

      大约有多少条?

  • 23. (2024·台州模拟)  图1是即将建造的“碗形”景观池的模拟图,设计师将它的外轮廓设计成如图2所示的

    图形.它是由线段AC,线段BD,曲线AB,曲线CD围成的封闭图形,且AC//BD,BD在x轴上,曲线AB与曲线CD关于y轴对称.已知曲线CD是以C为顶点的抛物线的一部分,其函数解析式为:(p 为常数,8≤p≤40).

    1. (1) 当p=10时,求曲线AB的函数解析式.
    2. (2) 如图3,用三段塑料管EF,FG,EH围成一个一边靠岸的矩形荷花种植区,E,F分别在曲线CD,曲线AB上,G,H在x轴上.

      ①记EF=70米时所需的塑料管总长度为L1 , EF=60米时所需的塑料管总长度为L2.若L1<L2 , 求p的取值范围.

      ②当EF与AC的差为多少时,三段塑料管总长度最大?请你求出三段塑料管总长度的最大值.

  • 24. (2024·台州模拟) 【概念呈现】在钝角三角形中,钝角的度数恰好是其中一个锐角的度数与90度的和,则称这个钝角三角形为和美三角形,这个锐角叫做和美角.

    1. (1) 【概念理解】当和美三角形是等腰三角形时,求和美角的度数. 
    2. (2) 【性质探究】如图1,△ABC是和美三角形,∠B是钝角,∠A是和美角,

      求证:.

    3. (3) 【拓展应用】如图2,AB是⊙O的直径,且AB=13,点C,D是圆上的两点,弦CD与AB交于点E,连接AD,BD,△ACE是和美三角形.

      ①当BC=5时,求AD的长.

      ②当△BCD是和美三角形时,直接写出的值.

微信扫码预览、分享更方便

试卷信息