当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖南省衡阳县第二中学2023-2024学年高二下学期期中达标...

更新时间:2024-04-29 浏览次数:33 类型:期中考试
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
  • 1. (2024高二下·衡阳期中) 若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”,现从1,2,3,4,5,6这六个数字中任取3个,组成无重复数字的三位数,其中“伞数”的个数为( )
    A . 120 B . 80 C . 20 D . 40
  • 2. (2024高二下·衡阳期中) 的展开式中的常数项为( )
    A . B . 240 C . D . 180
  • 3. (2024高二下·衡阳期中) 已知随机变量 ,其中 ,且 ,若 的分布列如下表,则m的值为(  )

    ξ

    1

    2

    3

    4

    P

     

    m

    n

    A . B . C . D .
  • 4. (2024高二下·柘荣月考) 甲箱中有2个白球和4个黑球,乙箱中有4个白球和2个黑球.先从甲箱中随机取出一球放入乙箱中,以分别表示由甲箱中取出的是白球和黑球;再从乙箱中随机取出一球,以B表示从乙箱中取出的是白球,则下列结论错误的是( )
    A . 互斥 B . C . D .
  • 5. (2024高二下·衡阳期中) 某中学开展高二年级“拔尖创新人才”学科素养评估活动,其中物化生、政史地、物化政三种组合人数之比为 , 这三个组合中分别有10%,6%,2%的学生参与此次活动,现从这三个组合中任选一名学生,这名学生参与此次活动的概率为( )
    A . 0.044 B . 0.18 C . 0.034 D . 0.08
  • 6. (2024高二下·衡阳期中) 已知袋子中有除颜色外完全相同的4个红球和8个白球,现从中有放回地摸球8次(每次摸出一个球,放回后再进行下一次摸球),规定每次摸出红球计3分,摸出白球计0分,记随机变量X表示摸球8次后的总分值,则( )
    A . 8 B . C . D . 16
  • 7. (2024高二下·衡阳期中) 下列说法正确的是( )
    A . 已知一组数据7,7,8,9,5,6,8,8,则这组数据的中位数为8 B . 已知一组数据 , …,的方差为2,则 , …,的方差为4 C . 具有线性相关关系的变量xy , 其线性回归方程为 , 若样本点的中心为 , 则 D . 若随机变量X服从正态分布 , 则
  • 8. (2024高二下·衡阳期中) 下列说法正确的是( )
    A . 某同学定点投篮每次命中的概率均为 , 每命中一次得2分,若记10次投篮得分为X , 则随机变量X服从二项分布,简记 B . 某工厂生产了一批产品50件,其中质量达到“级”的有20件,则从该批产品中随机抽取10件,记录抽到的产品中为“非A级”的个数为Y , 则随机变量Y的数学期望为 C . 若随机变量的成对数据的线性相关系数 , 则认为随机变量XY是确定的函数关系,不是线性相关关系 D . 若随机变量 , 其分布密度函数为 , 则
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.
三、填空题:本题共4小题,每小题5分,共20分.
四、解答题:本题共4题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.
  • 17. (2024高二下·衡阳期中) 我们平时常用的视力表叫做对数视力表,视力呈现为4.8,4.9,5.0,5.1.视力为正常视力.否则就是近视.某校进行一次对学生视力与学习成绩的相关调查,随机抽查了100名近视学生的成绩(按照各科占一定权重计算而得的满分100分的综合成绩),得到频率分布直方图如下:

    1. (1) 估计该校近视学生学习成绩的第85百分位数;(精确到0.1)
    2. (2) 已知该校学生的近视率为54%,学生成绩的优秀率为36%(成绩分视作优秀),从该校学生中任选一人,若此人的成绩为优秀,求此人近视的概率.(以样本中的频率作为相应的概率)
  • 18. (2024高二下·衡阳期中) 已知二项式
    1. (1) 若展开式中第二项系数与第四项系数之比为1:8,求二项展开式的系数之和.
    2. (2) 若展开式中只有第6项的二项式系数最大,求展开式中的常数项.
  • 19. (2024高二下·新会期末) 面试是求职者进入职场的一个重要关口,也是机构招聘员工的重要环节.某科技企业招聘员工,首先要进行笔试,笔试达标者进入面试,面试环节要求应聘者回答3个问题,第一题考查对公司的了解,答对得2分,答错不得分,第二题和第三题均考查专业知识,每道题答对得4分,答错不得分.
    1. (1) 若一共有100人应聘,他们的笔试得分X服从正态分布 , 规定为达标,求进入面试环节的人数大约为多少(结果四舍五入保留整数);
    2. (2) 某进入面试的应聘者第一题答对的概率为 , 后两题答对的概率均为 , 每道题是否答对互不影响,求该应聘者的面试成绩Y的数学期望.

      附:若),则.

  • 20. (2024高二下·衡阳期中) 如图,已知四棱锥S-ABCD.

    1. (1) 从5种颜色中选出3种颜色,涂在四棱锥S-ABCD的5个顶点上,每个顶点涂1种颜色,并使同一条棱上的2个顶点异色,求不同的涂色方法数;
    2. (2) 从5种颜色中选出4种颜色,涂在四棱锥S-ABCD的5个顶点上,每个顶点涂1种颜色,并使同一条棱上的2个顶点异色,求不同的涂色方法数.

微信扫码预览、分享更方便

试卷信息