一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
-
-
-
4.
(2024高一下·浙江月考)
正方体的平面展开图如图所示,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EG%3C%2Fmi%3E%3Cmi%3EH%3C%2Fmi%3E%3C%2Fmath%3E)
为四条对角线,则在正方体中,这四条对角线所在直线互相垂直的有( )
![](//tikupic.21cnjy.com/2024/05/21/b3/cb/b3cb3d98b603c169ac92131aa747819f.png)
A . 1对
B . 2对
C . 3对
D . 4对
-
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件
-
-
-
8.
(2024·重庆市模拟)
《九章算术》是我国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中非常重要的一部.在《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.已知“堑堵”
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
的所有顶点都在球
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EO%3C%2Fmi%3E%3C%2Fmath%3E)
的球面上,且
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmath%3E)
. 若球
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EO%3C%2Fmi%3E%3C%2Fmath%3E)
的表面积为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmtext%3E%CF%80%3C%2Fmtext%3E%3C%2Fmath%3E)
, 则这个三棱柱的表面积是( )
二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
-
-
A .
B .
在
上只有1个零点
C .
在
上单调递增
D . 直线
为
图象的一条对称轴
-
三、填空题:本题共3小题,每小题5分,共15分.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
-
-
(1)
求当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
时,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的解析式;
-
(2)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E%2C%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%5D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
上的值域.
-
-
-
(2)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmover+accent%3D%22true%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EM%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo+stretchy%3D%22true%22%3E%E2%86%92%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%E2%8B%85%3C%2Fmo%3E%3Cmover+accent%3D%22true%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EN%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo+stretchy%3D%22true%22%3E%E2%86%92%3C%2Fmo%3E%3C%2Fmover%3E%3C%2Fmath%3E)
的取值范围.
-
-
(1)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的值;
-
-
-
(1)
证明:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmtext%3E%E2%88%A5%3C%2Fmtext%3E%3C%2Fmath%3E)
平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
.
-
(2)
求异面直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
所成角的大小.
-
(3)
求直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
与平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
所成角的正切值.
-
19.
(2024高一下·浙江月考)
当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
且
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E%E2%89%A0%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmath%3E)
时,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3Cmo%3E%C3%97%3C%2Fmo%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmi%3Em%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmath%3E)
对一切
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Em%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
恒成立.学生小刚在研究对数运算时,发现有这么一个等式
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%C3%97%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%C3%97%3C%2Fmo%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmath%3E)
, 带着好奇,他进一步对
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3Cmo%3E%C3%97%3C%2Fmo%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmi%3Em%3C%2Fmi%3E%3Cmo%3E%C3%97%3C%2Fmo%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmath%3E)
进行深入研究.
-
-
-
(3)
证明:当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Em%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmath%3E)
时,只有一对正整数对
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3Cmn%3E%2C%3C%2Fmn%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
使得等式
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3Cmo%3E%C3%97%3C%2Fmo%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmi%3Em%3C%2Fmi%3E%3Cmo%3E%C3%97%3C%2Fmo%3E%3Cmtext%3El%3C%2Fmtext%3E%3Cmtext%3Eo%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmtext%3Eg%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmath%3E)
成立.