高等生物细胞器的稳态是细胞进行正常生命活动的基础。细胞质核糖体由大小两个亚基组成,每个亚基由蛋白质和RNA在核仁组装而成。线粒体和叶绿体内存在环状DNA和自身核糖体,该类核糖体与细菌的核糖体相似,而与细胞质核糖体差别较大。线粒体和叶绿体的蛋白质有的由核基因编码,有的由自身基因编码。线粒体和叶绿体均可经分裂增殖。植物分生组织中的前质体在光下可转变为叶绿体。内质网和高尔基体在细胞分裂初期崩解,并以小膜泡形式被分配到子细胞中,细胞分裂完成后重新组装。
实验组 | ① | ② | ③ | ④ | ⑤ |
底物 | + | + | + | + | + |
RNA组分 | + | + | - | + | - |
蛋白质组分 | + | - | + | - | + |
低浓度Mg2+ | + | + | + | - | - |
高浓度Mg2+ | - | - | - | + | + |
产物 | + | - | - | - | + |
根据实验结果可以得出的结论是( )
不同处理下各指标间的相关系数
指标 | 净光合速率 | 气孔导度 | 胞间CO2浓度 | 蒸腾速率 |
净光合速率 | 1 | -0.537 | 0.791 | -0.505 |
气孔导度 | 1 | -0.529 | 0.996 | |
胞间CO2浓度 | 1 | -0.544 | ||
蒸腾速率 | 1 |
注:相关系数越接近1,相关越密切(负值即为负相关)
①拟采用农杆菌转化法将野生型H基因转入突变型植株,若突变体表型确由该突变造成,则转基因植株的新生叶应为色。已知突变体新生叶黄化的原因是叶绿素含量大幅减少,推测H蛋白最有可能为叶绿素(填“合成”或“降解”)酶,体现了基因(填“直接”或“间接”)控制生物性状。
②已知突变基因上新增了一个限制酶B的酶切位点(如图甲),为便于在后续研究中检测该突变,科研人员利用技术扩增亲本野生型和突变型基因片段,将扩增产物用处理,通过凝胶电泳即可进行突变检测,请在图乙中将酶切结果对应位置的条带涂黑。
③在油菜大规模种植过程中,需尽量避免不同品系之间授粉,否则影响种子纯度,导致油菜籽减产。油菜新生叶黄化表型易辨识,且对产量没有显著影响。为避免F2及后代在大规模种植过程中出现杂交而导致减产,提出一条简单易行的田间操作:。
限制酶BamH I、EcoR I、Hind Ⅲ识别序列分别为G↓GATCC、G↓AATTC、A↓AGCTT(箭头所指为酶切位点)
为进一步探究p38 MARK与caspase-3在海马细胞凋亡过程中的作用机制,科研人员建立长期低O2高CO2小鼠模型,观察海马细胞凋亡以及p38 MAPK、caspase-3活性情况。
①对海马凋亡细胞进行荧光标记,荧光显微镜观察。结果如图甲,推测图(填“A”或“B”)为实验组的镜检结果。
②蛋白裂解液提取海马细胞总蛋白,利用蛋白浓度测定试剂盒测定蛋白浓度,经电泳后加入的单克隆抗体和β内参蛋白,化学发光检测试剂反应5min后进行感光、显影(如图乙),利用定量软件读取p38 MAPK及β内参蛋白条带的光密度值。p38 MAPK条带光密度和β内参蛋白条带光密度比值可代表p38 MAPK的相对蛋白含量,由此推测β内参蛋白的作用是。实验结果表明实验组p38 MAPK的相对蛋白含量较对照组明显增加。
③测定海马组织中caspase-3活性,结果显示实验组caspase-3活性较对照组有明显增加,进一步在水平证明了模型小鼠的海马组织存在神经细胞的凋亡。基于本研究的结果,可推测长时间处于低O2高CO2环境下引发海马细胞凋亡的机制可能是。