一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)
-
-
2.
(2023九上·田阳期中)
一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数解析式:h=﹣3(t﹣2)
2+5,则小球距离地面的最大高度是( )
A . 2米
B . 3米
C . 5米
D . 6米
-
-
-
5.
(2023九上·田阳期中)
如图所示,棋盘上有A、B、C三个黑子与P、Q两个白子,要使△ABC ∽△RPQ,则第三个白子R应放的位置可以是 ( )
![](//tikupic.21cnjy.com/ct20241o/0a/08/0a0862c54d2e8ce333fc56100ad1f527.png)
A . 甲
B . 乙
C . 丙
D . 丁
-
6.
(2023九上·田阳期中)
如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上,若线段
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E8%3C%2Fmn%3E%3Cmn%3E5%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmtext%3Ecm%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 则线段
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的长是( )
![](//tikupic.21cnjy.com/ct20241o/4d/48/4d48be7ddbb44d922b010f0d1132071a.png)
-
7.
(2023九上·田阳期中)
如表是一组二次函数y=x
2﹣x﹣3的自变量和函数值的关系,那么方程x
2﹣x﹣3=0的一个近似根是( )
A . 1.2
B . 2.3
C . 3.4
D . 4.5
-
8.
(2024九下·济南模拟)
正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E1%3C%2Fmtext%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3E0%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E5%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E3%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
, 设土石方日平均运送量为V(单位:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E3%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
/天),完成运送任务所需要的时间为t(单位:天),则V与t满足( )
A . 反比例函数关系
B . 正比例函数关系
C . 一次函数关系
D . 二次函数关系
-
A . 图象在第二、四象限
B . 点
在反比例函数的图象上
C .
随
的增大而增大
D . 当
时,
-
A . 0.9m
B . 1.2m
C . 1.5m
D . 2.5m
-
11.
(2023九上·田阳期中)
在平面直角坐标系中,已知二次函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ec%3C%2Fmi%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E%E2%89%A0%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的图象如图所示,有下列
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E5%3C%2Fmn%3E%3C%2Fmath%3E)
个结论:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3E%E2%91%A0%3C%2Fmi%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmi%3Ec%3C%2Fmi%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3E%E2%91%A1%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3E%E2%91%A2%3C%2Fmi%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ec%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3E%E2%91%A3%3C%2Fmi%3E%3Cmsup%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3Ec%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3E%E2%91%A4%3C%2Fmi%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ec%3C%2Fmi%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
. 其中正确的结论有( )
![](//tikupic.21cnjy.com/ct20241o/54/b1/54b1e6462f2ac1496fe38ef58d78a8a8.png)
-
12.
(2024九下·上海市模拟)
小明按照以下步骤画线段AB的三等分点:
画法 | 图形 |
1.以A为端点画一条射线; 2.用圆规在射线上依次截取3条等长线段AC、CD、DE,连接BE; 3.过点C、D分别画BE的平行线,交线段AB于点M、N,M、N就是线段AB的三等分点. |
|
这一画图过程体现的数学依据是( )
A . 两直线平行,同位角相等
B . 两条平行线之间的距离处处相等
C . 垂直于同一条直线的两条直线平行
D . 两条直线被一组平行线所截,所得的对应线段成比例
二、填空题(本大题共6小题,每小题2分,共12分.)
-
-
14.
(2023九上·田阳期中)
在同一个平面直角坐标系
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmi%3EO%3C%2Fmi%3E%3Cmi%3Ey%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
中,二次函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的图像如图所示,则
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的大小关系为
(用“>”连接).
![](//tikupic.21cnjy.com/ct20241o/c4/15/c415a8c82de04de89288a59be0a3d00f.png)
-
-
16.
(2024九上·顺义期中)
在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
将矩形窗框
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
分为上下两部分,其中E为边
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的黄金分割点,即
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmsup%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmo%3E%E2%8B%85%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
. 已知
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
为2米,则线段
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的长为
米.
![](//tikupic.21cnjy.com/ct20241o/99/be/99be7e2846bfaa34984ea84838bca4c4.png)
-
-
18.
(2023九上·田阳期中)
学习了方程、不等式、函数后,老师提出如下问题:如何求不等式
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的解集?通过思考,小丽得到解题的方法:由方程
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的两根为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 可得函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的图象与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
轴的两个交点横坐标为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
、3,画出函数图象,观察该图象在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
轴下方的点,其横坐标的范围是不等式
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的解集.请你模仿小丽的方法,求得不等式
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E8%3C%2Fmn%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的解集为
.
三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)
-
-
20.
(2023九上·田阳期中)
如图,为了测量池塘的宽
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 在岸边找到点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
, 测得
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E50%3C%2Fmn%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的延长线上找一点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
, 测得
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 过点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
作
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmtext%3E%2F%2F%3C%2Fmtext%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
交
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的延长线于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
, 测出
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 则池塘的宽
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
为多少
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmath%3E)
?
![](//tikupic.21cnjy.com/ct20241o/71/de/71debb0fdb1baacfe6a5f8a72bf9a08d.png)
-
21.
(2023九上·田阳期中)
如图,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%29%3C%2Fmo%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
, 以OA、OB为边作平行四边形OACB,反比例函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
的图象经过点C.
求k的值;
根据图象,直接写出
时自变量x的取值范围;
将平行四边形OACB向上平移几个单位长度,使点B落在反比例函数的图象上.
![](//tikupic.21cnjy.com/ct20241o/27/e8/27e8e5a86aac5ecfdef88cf40ed091f0.png)
-
22.
(2023九上·田阳期中)
如图,点E在矩形ABCD的边AD上,且∠EBC=∠ECB.
(1)求证:AE=ED;
(2)连接BD交CB于点F,求△BCF和△DEF的面积之比.
![](//tikupic.21cnjy.com/ct20241o/5d/0d/5d0d0138c613bdc1e850087deaa7d473.jpg)
-
23.
(2023九上·田阳期中)
一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ev%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmsup%3E%3Cmi%3Et%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:
-
-
-
24.
(2023九上·田阳期中)
某校在基地参加社会实践活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E69%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
米的不锈钢栅栏围成,与墙平行的一边留一个宽为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmath%3E)
米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:
请根据上面的信息,解决问题:
-
-
(2)
求园地面积
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3ES%3C%2Fmi%3E%3C%2Fmath%3E)
与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
的函数关系式;
-
-
25.
(2023九上·田阳期中)
学校拓展小组研制了绘图智能机器人(如图
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmath%3E)
),顺次输入点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的坐标,机器人能根据图
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
, 绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的解析式.请根据以下点的坐标,解答下列问题:
![](//tikupic.21cnjy.com/ct20241o/c9/2a/c92af4ae03fa3455498c91de0923cb09.png)
-
(1)
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 能绘制______(填“线段或抛物线”),求出线段的长度或抛物线的函数关系式;
-
(2)
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 能绘制______(填“线段或抛物线”),求出线段的长度或抛物线的函数关系式.
-
26.
(2024九下·费县模拟)
定义:在平面直角坐标系
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmi%3EO%3C%2Fmi%3E%3Cmi%3Ey%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
中,当点N在图形M的内部,或在图形M上,且点N的横坐标和纵坐标相等时,则称点N为图形M的“梦之点”.
-
(1)
如图①,矩形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的顶点坐标分别是
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 在点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EM%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EM%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EM%3C%2Fmi%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
中,是矩形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
“梦之点”的是___________;
-
(2)
点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EG%3C%2Fmi%3E%3Cmfenced+open%3D%22%28%22+close%3D%22%29%22%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
是反比例函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmi%3Ek%3C%2Fmi%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H的坐标是___________,直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EG%3C%2Fmi%3E%3Cmi%3EH%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的解析式是
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
___________.当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
时,x的取值范围是___________.
-
(3)
如图②,已知点A,B是抛物线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
上的“梦之点”,点C是抛物线的顶点,连接
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 判断
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的形状,并说明理由.