(1)点P到达终点C时,求t的值,并指出此时BQ的长;
(2)当点Р运动到AD上时,t为何值能使?
(3)t为何值时,四点P、Q、C、E成为一个平行四边形的顶点?
(4)能为直角三角形时t的取值范围________.(直接写出结果)
(注:备用图不够用可以另外画)
(1)求参加这次调查统计的学生总人数及这个区八年级学生平均每人一学年来参加志愿者活动的次数;
(2)在这次抽样调查中,众数和中位数分别是多少?
(3)如果该区共有八年级学生人,请你估计“活动次数不少于次”的学生人数大约多少人.
(2)解方程:2﹣= .
(1)求小明跑步的平均速度;
(2)如果小明在家取票和寻找“共享单车”共用了4分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
若时,且点恰好落在边上,请直接写出的长;
若时, 且是以为腰的等腰三角形,试求的长;
若时,且点落在矩形内部(不含边长),试直接写出的取值范围.
(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是______.
(2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是______.
(3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率是多少?(请用列表法或树状图法说明)
请你要根据图中提供的信息,解答下列问题:
(1)求本次被调查学生的人数,并补全条形统计图;
(2)在图①中,求出“不知道”部分所对应的圆心角的度数;
(3)若全校共有1440名学生,请你估计这所学校有多少名学生知道母亲的生日?