关于同一种多边形的平面密铺
平面密铺的定义:平面密铺是指用一些形状大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,这就是平面图形的密铺,又称做平面图形的镶嵌.
任务一:探究同一种正多边形的密铺.
如图1,通过拼图发现正方形、正六边形都可以进行密铺,此时公共顶点处的几个角正好拼成了一个周角.
问题① 铺的条件为:当公共顶点处所有角的和为___________ , 并使相等的边重合时,该图形就可以进行密铺.
问题② 认为正五边形可以进行密铺吗?并说明理由.
任务二:探究同一种一般多边形的密铺
经过同学们动手实验,每小组画出自己小组的拼接图,如图2.
问题③ 观察图2,可以发现任意__________和任意__________都可以单独密铺.
经过研究发现三对对边平行的六边形可以单独密铺,人们借助六边形的密铺,发现虽然正五边形不能进行密铺,但有些特殊五边形可以进行密铺,从此展开了对一般五边形的密铺探究.
目前可以密铺的凸五边形共有15种,如图3为其中一种五边形的密铺图.
问题④ 图4为图3中抽象出的一个五边形,其中 , , 则的度数为__________.
在中,是边上的中线,若 , , 你能判断的取值范围吗?
如图①,小明同学考虑到,利用线段相等,可以构造全等把一些分散的已知条件整合在一个三角形里,因此得到如下解题思路:延长到 , 使 , 连接 , 构造一对全等三角形,然后在中就可以判断的取值范围,从而求出的取值范围.