①无理数是无限小数;②无限小数是无理数;③开方开不尽的数是无理数;④两个无理数的和一定是无理数;⑤无理数的平方一定是有理数.
按要求回答下列问题:
(1)在图中建立正确的平面直角坐标系;
(2)根据所建立的坐标系,直接写出点C的坐标 ( , );
(3)作出三角形ABC关于y轴对称的三角形A1B1C1;
(4)求△ABC的周长.
(1)由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B'、C'的位置,并写出他们的坐标:___________、___________;
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点关于第一、三象限的角平分线的对称点的坐标为___________(不必证明);
(3)已知两点、 , 试在直线L上画出点Q,使点Q到D、E两点的距离之和最小,求QD+QE的最小值.
(2)一般化探究:在三角形ABC中,若AB=13,AC=14,BC=15,求△ABC的面积.
(3)模型建立:在图1三角形中,分别以AB,BC为边向外作正方形ABDE和正方形BCFG,试说明S△ABC=S△BDG . (温馨提示:作DPBG,AHBC)
(4)模型应用:分别以图1中三角形的三边为边向外作正方形ABDE、正方形BCFG和正方形AMNC,如图3,利用(3)中的结论求多边形DEMNFG的面积,直接写出结论.