方案1:如图(1),先在平地上取一个可以直接到达A、B的点C,连接AC并延长AC至点D,连接BC并延长至点E,使DC=AC,EC=BC,最后量出DE的距离就是AB的长.
方案2:如图(2),过点B作AB的垂线BF,在BF上取C、D两点,使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB间的距离
问:(1)方案1是否可行?并说明理由;
(2)方案2是否可行?并说明理由;
(3)小明说:“在方案2中,并不一定需要BF⊥AB,DE⊥BF,将“BF⊥AB,DE⊥BF”换成条 也可以.”你认为小明的说法正确吗?如果正确的话,请你把小明所说的条件补上.
【基本运用】(1)如图2,把长方形纸片ABCD沿对角线AC折叠,点B落在点B'处,重合部分△ACE是等腰三角形吗?为什么?
【类比探究】(2)如图3,△ABC中,∠ABC的角平分线BO与外角∠ACG的角平分线交于点O,过点O作OD//BC分别交AB、AC于点D、点E,试探究线段BD、DE、CE之间的数量关系并说明理由;
【拓展提升】(3)如图4,四边形ABCD中,AD∥BC,E为CD边的中点,且AE平分∠BAD,连接BE,求证:AE⊥BE.