当前位置: 初中数学 / 阅读理解
  • 1. (2018八上·北京月考) 阅读材料

    小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.

    小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.

    他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:

    也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.

    延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.

    参考小明思考问题的方法,解决下列问题:

    1. (1) 计算(2x+1)(3x+2)所得多项式的一次项系数为
    2. (2) 计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为
    3. (3) 若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所得多项式的一次项系数为0,则a=
    4. (4) 若x2﹣3x+1是x4+ax2+bx+2的一个因式,则2a+b的值为

微信扫码预览、分享更方便