欧几里得在《几何原本》中利用该图解释了 ,连结AC,记△ABC的面积为 ,图中阴影部分的面积为 .若 ,则 的值为 ( )
例题:已知二次三项式 有一个因式是 ,求另一个因式以及m的值
解:设另一个因式为 ,得
则 ∴ 解得: ,
∴另一个因式为 ,m的值为—21
请仿照上面的方法解答下面的问题:
已知二次三项式 有一个因式是 ,求另一个因式以及k的值。
解:设 ,则原式
这样的解题方法叫做“换元法”,即当复杂的多项式中,某一部分重复出现时,我们用字母将其替换,从而简化这个多项式,换元法是一个重要的数学方法,不少问题能用换元法解决.请你用“换元法”对下列多项式进行因式分解:
①
②
小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.
小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.
他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:
也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.
延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.
参考小明思考问题的方法,解决下列问题: