当前位置: 初中数学 / 综合题
  • 1. (2019·新昌模拟) 在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.

    1. (1) 探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.

      他的证明思路如下:

      第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.

      第二步:证明△APM≌△ANM,得MP=MM.

      第一步:证明∠POM=90°,得OM2+OP2=MP2.

      最后得到OM2+BN2=MN2.

      请你完成第二步三角形全等的证明.

    2. (2) 继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
    3. (3) 新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).

微信扫码预览、分享更方便