当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省绍兴市新昌县2019届数学中考一模试卷

更新时间:2019-09-29 浏览次数:508 类型:中考模拟
一、单选题
二、填空题
三、解答题
    1. (1) 计算: +( ﹣π)0﹣4cos45°﹣|﹣3|;
    2. (2) 解分式方程: .
  • 18. (2019·新昌模拟) 如图,正方形网格中有一段弧,弧上三点A,B,C均在格点上.

    1. (1) 请作图找出圆心P的位置(保留作图痕迹),并写出它的坐标.
    2. (2) 求 的长度.
  • 19. (2019·新昌模拟) 新昌特色小吃是中华饮食文化宝库中的一块瑰宝,种类繁多,色香味美,著名的“米海茶”、“春饼”、“芋饺”、“炸面”、“炒年糕”等都是新昌特色小吃.一数学兴趣小组在全校范围内随机抽取了一些同学进行“我最喜爱的新昌特色小吃”的调查活动,将调查结果绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:

    1. (1) 请将条形统计图补充完整.
    2. (2) 在扇形统计图中,表示“炒年糕”对应的扇形的圆心角是多少度?
    3. (3) 若该校共有1200名学生,请你估计该校学生中最喜爱“米海茶”的学生有多少人?
  • 20. (2019·新昌模拟) 游泳池应定期换水,打开排水孔排水时,池内的存水量Q(立方米)与排水时间t小时的函数关系如图所示.

    1. (1) 根据图象直接写出排水前游泳池的存水量,并计算出排水的速度.
    2. (2) 求Q关于t的函数表达式,并计算排水多久后,游泳池内还剩水156立方米.
  • 21. (2019·新昌模拟) 如图,某轮船在点B处,测得小岛A在B的北偏东60°方向,然后向正东方向航行60海里到点C处,测得小岛A在C的北偏东30°方向.

    1. (1) 求小岛A到这艘轮船航行在点B时AB的长度.
    2. (2) 若轮船继续往正东方向行驶40海里到点D处,求AD的距离(精确到1海里).( ≈2.65)
  • 22. (2019·新昌模拟) 某农场造一个矩形饲养场ABCD,如图所示,为节省材料,一边靠墙(墙足够长),用总长为77m的木栏围成一块面积相等的矩形区域:矩形AEGH,矩形HGFD,矩形EBCF,并在①②③处各留1m装门(不用木栏),设BE长为x(m),矩形ABCD的面积为y(m2)

    1. (1) ∵S矩形AEGH=S矩形HGFD=S矩形EBCF , ∴S矩形AEFD=2S矩形EBCF , ∴AE:EB=.
    2. (2) 求y关于x的函数表达式和自变量x的取值范围.
    3. (3) 当x为何值时,矩形ABCD的面积有最大值?最大值为多少?
  • 23. (2019·新昌模拟) 在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.
    1. (1) 探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.

      他的证明思路如下:

      第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.

      第二步:证明△APM≌△ANM,得MP=MM.

      第一步:证明∠POM=90°,得OM2+OP2=MP2.

      最后得到OM2+BN2=MN2.

      请你完成第二步三角形全等的证明.

    2. (2) 继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
    3. (3) 新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
  • 24. (2019·新昌模拟) 甲,乙两人沿湖边环形道上匀速跑步,他们开启了微信运动﹣﹣微信上实时统计每天步数的软件.已知乙的步距比甲的步距少0.4m(步距是指每一步的距离),且每2分钟甲比乙多跑25步,两人各跑3周后到达同一地点,跑3圈前后的时刻和步数如下:

    出发时刻

    出发时微信运动中显示的步数

    结束时刻

    结束时微信运动中显示的步数

    9:30

    2158

    9:40

    4158

    a

    1308

    9:40

    4308

    1. (1) 求甲,乙的步距和环形道的周长;
    2. (2) 求表中a的值;
    3. (3) 若两人于9:40开始反向跑,问:此后,当微运动中显示的步数相差50步时,他们相遇了几次?

微信扫码预览、分享更方便

试卷信息