试题
试卷
试题
首页
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
当前位置:
初中数学
/
综合题
1.
(2020·杭州模拟)
定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.
(1) 若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A=
度;
(2) 如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=4.若BD是∠ABC的平分线,
①求证:△BDC是“近直角三角形”;
②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.
(3) 如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连结AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求tan∠C的值.
微信扫码预览、分享更方便
使用过本题的试卷
浙江省宁波市镇海区2020届九年级上学期数学期末考试试卷
浙江省杭州市2020年数学中考仿真模拟卷