当前位置: 初中数学 / 作图题
  • 1. (2020·建邺模拟) (概念认识)

    若以三角形某边上任意一点为圆心,所作的半圆上的所有点都在该三角形的内部或边上,则将符合条件且半径最大的半圆称为该边关联的极限内半圆.

    如图①,点P是锐角△ABC的边BC上一点,以P为圆心的半圆上的所有点都在△ABC的内部或边上.当半径最大时,半圆P为边BC关联的极限内半圆.

     

    1. (1) (初步思考)若等边△ABC的边长为1,则边BC关联的极限内半圆的半径长为.
    2. (2) 如图②,在钝角△ABC中,用直尺和圆规作出边BC关联的极限内半圆(保留作图痕迹,不写作法).
    3. (3) (深入研究)如图③,∠AOB=30°,点C在射线OB上,OC=6,点Q是射线OA上一动点.在△QOC中,若边OC关联的极限内半圆的半径为r,当1≤r≤2时,求OQ的长的取值范围.

微信扫码预览、分享更方便