当前位置: 初中数学 / 综合题
  • 1. (2021八上·即墨期中) (背景介绍)勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.

    (小试牛刀)把两个全等的直角三角形△ABC和△DAE如图1放置,其三边长分别为abc . 显然,∠DAB=∠B=90°,ACDE . 请用abc分别表示出梯形ABCD , 四边形AECD , △EBC的面积:

    S梯形ABCD

    SEBC

    S四边形AECD

    再探究这三个图形面积之间的关系,它们满足的关系式为,化简后,可得到勾股定理.

    (知识运用)

    如图2,河道上AB两点(看作直线上的两点)相距200米,CD为两个菜园(看作两个点),ADABBCAB , 垂足分别为ABAD=80米,BC=70米,现在菜农要在AB上确定一个抽水点P , 使得抽水点P到两个菜园CD的距离和最短,则该最短距离为米.

    (知识迁移)

    借助上面的思考过程,请直接写出当0<x<15时,代数式 的最小值=

微信扫码预览、分享更方便