当前位置: 初中数学 / 综合题
  • 1. (2022九上·诸暨期末) 足球射门时,在不考虑其他因素的条件下,射点到球门AB的张角越大,射门越好.当张角达到最大值时,我们称该射点为最佳射门点.通过研究发现,如图1所示,运动员带球在直线CD上行进时,当存在一点Q,使得(此时也有)时,恰好能使球门AB的张角达到最大值,故可以称点Q为直线CD上的最佳射门点.

    1. (1) 如图2所示,AB为球门,当运动员带球沿CD行进时,为其中的三个射门点,则在这三个射门点中,最佳射门点为点
    2. (2) 如图3所示,是一个矩形形状的足球场,AB为球门,于点D,.某球员沿CD向球门AB进攻,设最佳射门点为点Q.

      ①用含a的代数式表示DQ的长度并求出的值;

      ②已知对方守门员伸开双臂后,可成功防守的范围为 , 若此时守门员站在张角内,双臂张开MN垂直于AQ进行防守,求MN中点与AB的距离至少为多少时才能确保防守成功.(结果用含a的代数式表示)

微信扫码预览、分享更方便