当前位置: 初中数学 / 实践探究题
  • 1. (2021八上·宝安期末)            

    1. (1) 【问题背景】学校数学兴趣小组在专题学习中遇到一个几何问题:如图1,已知等边△ABC,D是△ABC外一点,连接AD、CD、BD,若∠ADC=30°,AD=3,BD=5,求CD的长.该小组在研究如图2中△OMN≌△OPQ中得到启示,于是作出图3,从而获得了以下的解题思路,请你帮忙完善解题过程.

      解:如图3所示,以DC为边作等边△CDE,连接AE.

      ∵△ABC、△DCE是等边三角形,

      ∴BC=AC,DC=EC,∠BCA=∠DCE=60°.

      ∴∠BCA+∠ACD=                  ▲                   +∠ACD,

      ∴∠BCD=∠ACE,

                        ▲                  

      ∴AE=BD=5.

      ∵∠ADC=30°,∠CDE=60°,

      ∴∠ADE=∠ADC+∠CDE=90°.

      ∵AD=3,

      ∴CD=DE=                  ▲                  

    2. (2) 【尝试应用】如图4,在△ABC中,∠ABC=45°,AB= , BC=4,以AC为直角边,A为直角顶点作等腰直角△ACD,求BD的长.
    3. (3) 【拓展创新】如图5,在△ABC中,AB=4,AC=8,以BC为边向外作等腰△BCD,BD=CD,∠BDC=120°,连接AD,求AD的最大值.

微信扫码预览、分享更方便