当前位置: 初中数学 / 实践探究题
  • 1. (2024·深圳模拟) 综合与应用

    如果将运动员的身体看作一点,则他在跳水过程中运动的轨迹可以看作为抛物线的一部分.建立如图2所示的平面直角坐标系xOy,运动员从点A(0,10)起跳,从起跳到入水的过程中,运动员的竖直高度y (m)与水平距离x (m)满足二次函数的关系.

    1. (1) 在平时的训练完成一次跳水动作时,运动员甲的水平距离x与竖直高度y的几组数据如下表:

      水平距离x(m)

                          0

      1

      1.5

      竖直高度y(m)

      10

      10

      6.25

      根据上述数据,求出y关于x的关系式;

    2. (2) 在(1)的这次训练中,求运动员甲从起点A到入水点的水平距离OD的长;
    3. (3) 信息1:记运动员甲起跳后达到最高点B到水面的高度为k(m),从到达到最高点B开始计时,则他到水面的距离h (m)与时间t (s)之间满足h=-5t2+k .

      信息2:已知运动员甲在达到最高点后需要1.6s的时间才能完成极具难度的270C 动作. 

      问题解决:

      ①请通过计算说明,在(1)的这次训练中,运动员甲能否成功完成此动作?

      ②运动员甲进行第二次跳水训练,此时他的竖直高度y(m)与水平距离x (m)的关系为y =ax2-ax+10(a<0),若选手在达到最高点后要顺利完成270C 动作,则a的取值范围是    ▲        .

微信扫码预览、分享更方便