当前位置: 初中数学 / 阅读理解
  • 1. (2024·东安模拟) 请阅读下列材料,完成相应的任务:

    著名数学家华罗庚先生说过:“数缺形时少直观,形缺数时难入微,数形结合百般好,割裂分家万事休.”数形结合是数学研究和学习中的重要思想和解题方法,用数形结合方法可以使复杂问题简单化、抽象问题具体化,有助于把握数学问题的本质,解决更加广泛领域的问题.

    比如有这样一个题目:设有两只电阻,分到为 , 问并联后的电阻值是多少?

    我们可以利用公式求得的值,也可以设计一种图形直接得出结果,具体如下:如图①,在直线上任取两点A,B,分别过点A,B作直线的垂线,并在这两条垂线上分别截取 , 且点C,D位于直线的同侧,连接AD,BC,交于点 , 过点直线 , 则线段EF的长度就是并联后的电阻值

    证明:

    依据1),

    (依据2).

    同理可得:




    即:.

    1. (1) 上面证明过程中的“依据1”和“依据2”分别是谁:

      依据1:.
      依据2:.

    2. (2) 如图②,两个电阻并联在同一电路中,已知R1=3千欧,R2=6千欧,请在图③中(1个单位长度代表1千欧)画出表示该电路图中总阻值R的线段长.

    3. (3) 受以上作图法的启发,小明提出了已知R1和R,求R2的一种作图方法,如图④,作△ABC,使∠C=90°,AC=BC=R1 , 过点B作BC的垂线,并在垂线上截取BD=R,使点D与点A在直线BC的同一侧,作射线AD,交CB的延长线于点E,则BE即为R2 . 你认为他的方法是否正确,若正确,请加以证明;若不正确,请说明理由.

微信扫码预览、分享更方便