试题
试卷
试题
首页
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
当前位置:
初中数学
/
综合题
1.
(2024八下·深圳期中)
(1) 【模型呈现】发现:如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E,由∠1+∠2=∠2+∠D=90°,得∠1=∠D,又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE,进而得到AC=
,BC=
.我们把这个数学模型称为“K字”模型或“一线三等角”模型:
(2) 【模型应用】应用:如图2,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.请探究线段DE,AD,BE之间的数量关系,并写出证明过程;
(3) 如图3,在平面直角坐标系xOy中,点A的坐标为(2,4),点B为平面内一点.若△AOB是以OA为斜边的等腰直角三角形,请直接写出点B的坐标
.
微信扫码预览、分享更方便
使用过本题的试卷
浙教版数学八上第1章章末重难点题型专训 一线三等角全等模型