当前位置: 初中数学 / 实践探究题
  • 1. (2024七下·玉州期末) 【提出问题】已知xy=2,且x>1,y<0,试确定x+y的取值范围.

    【分析问题】先根据已知条件用一个量如y表示另一个量如x , 然后根据题中已知量x的取值范围,构建另一量y的不等式,从而确定该量y的取值范围,同法再确定另一未知量x的取值范围,最后利用不等式性质即可获解.

    【解决问题】解:∵xy=2,∴xy+2.

    又∵x>1,∴y+2>1,∴y>-1.

    又∵y<0,∴-1<y<0,…①

    同理得1<x<2…②

    由①+②得-1+1<y+x<0+2.

    x+y的取值范围是0<x+y<2.

    【尝试应用】已知xy=-3,且x<-1,y>1,求2x+2y的取值范围.

微信扫码预览、分享更方便