当前位置: 高中数学 / 解答题
  • 1. (2024高三上·六枝特月考) 拟合和插值都是利用已知的离散数据点来构造一个能够反映数据变化规律的近似函数,并以此预测或估计未知数据的方法.拟合方法在整体上寻求最好地逼近数据,适用于给定数据可能包含误差的情况,比如线性回归就是一种拟合方法;而插值方法要求近似函数经过所有的已知数据点,适用于需要高精度模型的场景,实际应用中常用多项式函数来逼近原函数,我们称之为多项式插值.例如,为了得到的近似值,我们对函数进行多项式插值.设一次函数满足 , 可得上的一次插值多项式 , 由此可计算出的“近似值” , 显然这个“近似值”与真实值的误差较大.为了减小插值估计的误差,除了要求插值函数与原函数在给定节点处的函数值相等,还可要求在部分节点处的导数值也相等,甚至要求高阶导数也相等.满足这种要求的插值多项式称为埃尔米特插值多项式.已知函数上的二次埃尔米特插值多项式满足.

    1. (1) 求 , 并证明当时,
    2. (2) 当时, , 求的取值范围;
    3. (3) 利用计算的近似值,并证明其误差不超过0.1.(参考数据: . 结果精确到0.01)

微信扫码预览、分享更方便