当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省2018届九年级数学中考仿真试卷(一)

更新时间:2018-12-06 浏览次数:525 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 15. (2024八上·通山期末) 先化简,再求值: ,其中x是从-1、0、1、2中选取一个合适的数.
  • 16. (2018·河南模拟) 近期,中宣部、国家发改委发出开展节俭养德全民节约行动的通知,在全社会营造厉行节约、拒绝浪费的浓厚氛围,我市某中学为了解该校学生家庭月均用电量情况,给学生布置了收集自己家中月均用电量数据的课外作业,学校随机抽取了1000名学生家庭月均用电量的数据,并将调查数据整理如下:

    月均用电量a/度

    频数/户

    频率

    0≤a<50

    120

    0.12

    50≤a<100

    240

    n

    100≤a<150

    300

    0.30

    150≤a<200

    m

    0.16

    200≤a<250

    120

    0.12

    250≤a<300

    60

    0.06

    合  计

    1000

    1

    1. (1) 频数分布表中的m=,n=
    2. (2) 补全频数分布直方图;
    3. (3) 被调查的1000名学生家庭月均用电量的众数落在哪一个范围?
    4. (4) 求月均用电量小于150度的家庭数占被调查家庭总数的百分比.
  • 17. (2018·河南模拟) 如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,连接OC,AO延长线交⊙O于点D,OF是∠DOB的平分线,E为OF上一点,连接BE.

    1. (1) 求证:AB与⊙O相切;
    2. (2) ①当∠OEB=时,四边形OCBE为矩形;

      ②在①的条件下,若AB=4,则OA=时,四边形OCBE为正方形?

  • 18. (2018·河南模拟) 如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°.已知旗杆DE的高度为12米,试求楼房CB的高度.

    (参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)

  • 19. (2018·河南模拟) 如图,点P是反比例函数y= (k>0)图象在第一象限上的一个动点,过P作x轴的垂线,垂足为M,若△POM的面积为2.

    1. (1) 求反比例函数的解析式;
    2. (2) 若点B坐标为(0,﹣2),点A为直线y=x与反比例函数y= (k>0)图象在第一象限上的交点,连接AB,过A作AC⊥y轴于点C,若△ABC与△POM相似,求点P的坐标.
  • 20. (2018·河南模拟) 国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区。现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资。已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:

             运往地

    车 型

    甲 地(元/辆)

    乙 地(元/辆)

    大货车

    720

    800

    小货车

    500

    650

    1. (1) 求这两种货车各用多少辆?
    2. (2) 如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);
    3. (3) 在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
  • 21. (2018·河南模拟) 菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.

    1. (1) 如图1,当∠ABC=90°时,△OEF的形状是
    2. (2) 如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;
    3. (3) 在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且 时,直接写出线段CE的长.
  • 22. (2018·河南模拟) 如图,抛物线y=﹣ x2+bx+c与直线y= x+3交x轴负半轴于点A,交y轴于点C,交x轴正半轴于点B.

    1. (1) 求抛物线的解析式;
    2. (2) 点P为抛物线上任意一点,设点P的横坐标为x.

      ①若点P在第二象限,过点P作PN⊥x轴于N,交直线AC于点M,求线段PM关于x的函数解析式,并求出PM的最大值;

      ②若点P是抛物线上任意一点,连接CP,以CP为边作正方形CPEF,当点E落在抛物线的对称轴上时,请直接写出此时点P的坐标.

微信扫码预览、分享更方便

试卷信息