当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省绍兴市2018-2019学年九年级上学期数学期中考试试...

更新时间:2018-12-06 浏览次数:500 类型:期中考试
一、单选题
二、填空题
  • 11. (2018九上·绍兴期中) 如图,四个函数的图象中,分别对应的是:①y=ax2;②y=bx2;③y=cx2;④y=dx2 . 则a、b、c、d的大小关系为 .

  • 12. (2018九上·绍兴期中) 三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为
  • 13. (2023九上·成都月考) 如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2 . (结果保留π)


  • 14. (2018九上·绍兴期中) 平行于x轴的直线l分别与一次函数y=﹣x+3和二次函数y=x2﹣2x﹣3的图象交于A(x1 , y1),B(x2 , y2),C(x3 , y3)三点,且x1<x2<x3 , 设m=x1+x2+x3 , 则m的取值范围是.
  • 15. (2018九上·绍兴期中) 在平面直角坐标系,对于点P(x,y)和Q(x,y′),给出如下定义:若y= 则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).点(﹣5,﹣2)的“可控变点”坐标为;若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,实数a的取值范围为
  • 16. (2018九上·绍兴期中) 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为
  • 17. (2018九上·绍兴期中) 某居民小区一处圆柱形的输水管破裂,维修人员为更新管道,需确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.


    1. (1) 请你补全这个输水管道的圆形截面(要求:保留作图痕迹,标出圆心O);
    2. (2) 若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.
  • 18. (2018九上·绍兴期中) 已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3)



    1. (1) 求抛物线的表达式和顶点坐标;
    2. (2) 请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的表达式
  • 19. (2018九上·绍兴期中) 如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.

    1. (1) 弦长AB等于(结果保留根号);
    2. (2) 当∠D=20°时,求∠BOD的度数.
  • 20. (2018九上·绍兴期中) 随着通讯技术迅猛发展,人与人之间的沟通方式更加多样、便捷.李老师组织数学兴趣小组的同学们开展了“你最喜欢的沟通方式”问卷调查活动,并在全校范围内随机调查了部分学生(每人必选且只选一种),将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

    1. (1) 在扇形统计图中,表示“微信”的扇形圆心角的度数为 ;

    2. (2) 将条形统计图补充完整;
    3. (3) 寒假中的某一天,张明和李响都想从“电话”、“微信”、“QQ”三种沟通方式选一种方式与李老师联系,请用列表或画树状图的方法求出张明和李响两名同学恰好选中同一种沟通方式的概率.
  • 21. (2022九上·杭州月考) 已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.


    1. (1) 求证:ED=EC
    2. (2) 若CD=3,EC= ,求AB的长
  • 22. (2018九上·绍兴期中) 若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“奇妙四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据“奇妙四边形”对角线互相垂直的特征可得“奇妙四边形”的一个重要性质:

    “奇妙四边形”的面积等于两条对角线乘积的一半.根据以上信息回答:


    1. (1) 矩形“奇妙四边形”(填“是”或“不是”);
    2. (2) 如图2,已知⊙O的内接四边形ABCD是“奇妙四边形”,若⊙O的半径为6,∠BCD=60°.“奇妙四边形”ABCD的面积为;
    3. (3) 如图3,已知⊙O的内接四边形ABCD是“奇妙四边形”作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.
  • 23. (2018九上·绍兴期中) 某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每

    销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.

    1. (1) 直接写出y与x的函数关系式;
    2. (2) 设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?
  • 24. (2018九上·绍兴期中) 如图,在平面直角坐标系xOy中,已知A,B两点的坐标分别为(-4,0)(4,0),C(m,0)是线段AB上一点(与A,B点不重合),抛物线L1 (a<0)经过点A,C,顶点为D,抛物线L2 经过点C,B,顶点为E,AD,BE的延长线相交于点F

    1. (1) 若a= ,m=-1,求抛物线L1 , L2的解析式
    2. (2) 若a=-1,AF⊥BF,求m的值;
    3. (3) 是否存在这样的实数a(a<0),无论m取何值,直线AF与BF都不可能互相垂直?若存在,请直接写出a的两个不同的值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息