当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2014年浙江省湖州市中考数学试卷

更新时间:2017-04-25 浏览次数:794 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 19. (2022九上·镇海区期中) 已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).

    1. (1) 求证:AC=BD;
    2. (2) 若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.
  • 20. (2014·湖州) 如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y= 的图象上,过点A的直线y=x+b交x轴于点B.

    1. (1) 求k和b的值;
    2. (2) 求△OAB的面积.
  • 21. (2014·湖州)

    已知2014年3月份在某医院出生的20名新生婴儿的体重如下(单位:kg)

    4.7   2.9   3.2   3.5   3.8   3.4   2.8   3.3  4.0   4.5

    3.6   4.8   4.3   3.6   3.4   3.5   3.6   3.5  3.7   3.7

    1. (1) 求这组数据的极差;

    2. (2) 若以0.4kg为组距,对这组数据进行分组,制作了如下的“某医院2014年3月份20名新生婴儿体重的频数分布表”(部分空格未填),请在频数分布表的空格中填写相关的量


      某医院2014年3月份20名新生儿体重的频数分布表

           组别(kg)    

            划记    

            频数      





      3.55﹣3.95

      正一

      6







      合计

      20

    3. (3) 经检测,这20名婴儿的血型的扇形统计图如图所示(不完整),求:

      ①这20名婴儿中是A型血的人数;

      ②表示O型血的扇形的圆心角度数.

  • 22. (2014·湖州) 已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.

    1. (1) 当x≥50时,求y关于x的函数关系式;
    2. (2) 若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;
    3. (3) 为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收 元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.
  • 23. (2014·湖州)

    如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC= AC,连接OA,OB,BD和AD.

    1. (1) 若点A的坐标是(﹣4,4).

      ①求b,c的值;

      ②试判断四边形AOBD的形状,并说明理由;

    2. (2) 是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.

  • 24. (2014·湖州) 已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点P作PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0).

    1. (1) 若点E在y轴的负半轴上(如图所示),求证:PE=PF;
    2. (2) 在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;
    3. (3) 作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息