当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省深圳市2019届高三第一次(2月)调研考试数学理试题

更新时间:2019-05-14 浏览次数:318 类型:高考模拟
一、单选题
二、填空题
三、解答题
  • 16. (2019·深圳模拟) 如图,在平面四边形 中, 为其对角线,已知 ,且

    1. (1) 若 平分 ,且 ,求 的长;
    2. (2) 若 ,求 的长.
  • 17. (2019·深圳模拟) 如图,在四棱锥 中,底面 是边长为1的菱形, 的中点, 的中点,点 在线段 上,且 .

    1. (1) 求证: 平面  ;
    2. (2) 若平面 底面 ,且 ,求平面 与平面 所成锐二面角的余弦值.
  • 18. (2019高二下·广州期中) 在平面直角坐标系 中, 椭圆 的中心在坐标原点 ,其右焦点为 ,且点  在椭圆 上.

    1. (1) 求椭圆 的方程;
    2. (2) 设椭圆的左、右顶点分别为 是椭圆上异于 的任意一点,直线 交椭圆 于另一点 ,直线 交直线 点, 求证: 三点在同一条直线上.
  • 19. (2019·深圳模拟) 某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如下图所示:

    1. (1) 将去年的消费金额超过 3200 元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取 2 人,求至少有 1 位消费者,其去年的消费金额超过 4000 元的概率;
    2. (2) 针对这些消费者,该健身机构今年欲实施入会制,详情如下表:

      会员等级

      消费金额

      普通会员

      2000

      银卡会员

      2700

      金卡会员

      3200

      预计去年消费金额在 内的消费者今年都将会申请办理普通会员,消费金额在 内的消费者都将会申请办理银卡会员,消费金额在 内的消费者都将会申请办理金卡会员. 消费者在申请办理会员时,需-次性缴清相应等级的消费金额.该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:

      方案 1:按分层抽样从普通会员, 银卡会员, 金卡会员中总共抽取 25 位“幸运之星”给予奖励: 普通会员中的“幸运之星”每人奖励 500 元; 银卡会员中的“幸运之星”每人奖励 600 元; 金卡会员中的“幸运之星”每人奖励 800 元.

      方案 2:每位会员均可参加摸奖游戏,游戏规则如下:从-个装有 3 个白球、 2 个红球(球只有颜色不同)的箱子中, 有放回地摸三次球,每次只能摸-个球.若摸到红球的总数消费金额/元为 2,则可获得 200 元奖励金; 若摸到红球的总数为 3,则可获得 300 元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加 1 次摸奖游戏;每位银卡会员均可参加 2 次摸奖游戏;每位金卡会员均可参加 3 次摸奖游戏(每次摸奖的结果相互独立) .

      以方案 2 的奖励金的数学期望为依据,请你预测哪-种方案投资较少?并说明理由.

  • 20. (2019·深圳模拟) 已知函数 ,其定义域为 .(其中常数 ,是自然对数的底数)
    1. (1) 求函数 的递增区间;
    2. (2) 若函数 为定义域上的增函数,且 ,证明: .
  • 21. (2019·深圳模拟) 选修 4-4:坐标系与参数方程:在直角坐标系 中,直线 的参数方程为 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,直线 与曲线 交于不同的两点
    1. (1) 求曲线 的参数方程;
    2. (2) 若点 为直线 轴的交点,求 的取值范围.
  • 22. (2019·深圳模拟) 选修 4-5:不等式选讲:设函数
    1. (1) 当 时,求不等式 的解集;
    2. (2) 若不等式 上恒成立,求实数 的取值范围.

微信扫码预览、分享更方便

试卷信息