当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2014年四川省内江市中考数学试卷

更新时间:2017-05-23 浏览次数:1081 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 17. (2014·内江) 计算:2tan60°﹣| ﹣2|﹣ +( 1
  • 18. (2021·孝感模拟) 如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.

    1. (1) 求证:△ABM≌△BCN;
    2. (2) 求∠APN的度数.
  • 19. (2023·攀枝花模拟) 为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:

    1. (1) 在这项调查中,共调查了多少名学生?
    2. (2) 请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
    3. (3) 若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
  • 20. (2014·内江)

    “马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值: ≈1.7)

  • 21. (2014·内江)

    如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.

    1. (1) 求一次函数、反比例函数的解析式;

    2. (2) 反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.

  • 23. (2014·内江) 如图,∠AOB=30°,OP平分∠AOB,PC⊥OB于点C.若OC=2,则PC的长是

  • 24. (2014·内江) 已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是
  • 25. (2014·内江) 通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为

  • 26. (2014·内江)

    如图,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD.

    问题引入:

    1. (1) 如图①,当点D是BC边上的中点时,SABD:SABC=;当点D是BC边上任意一点时,SABD:SABC=(用图中已有线段表示).

    2. (2) 如图②,在△ABC中,O点是线段AD上一点(不与点A、D重合),连结BO、CO,试猜想SBOC与SABC之比应该等于图中哪两条线段之比,并说明理由.

    3. (3) 如图③,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,试猜想 + + 的值,并说明理由.

  • 27. (2014·内江) 某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
    1. (1) 今年5月份A款汽车每辆售价多少万元?
    2. (2) 为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
    3. (3) 如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
  • 28. (2014·内江) 如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.

    1. (1) 求抛物线的解析式;
    2. (2) 线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
    3. (3) 抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.

微信扫码预览、分享更方便

试卷信息