当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2014年江苏省苏州市中考数学试卷

更新时间:2024-07-12 浏览次数:1124 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 21. (2014·苏州) 先化简,再求值: ÷(1+ ),其中x= ﹣1.
  • 23. (2014·苏州) 如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.

    1. (1) 求证:△BCD≌△FCE;
    2. (2) 若EF∥CD,求∠BDC的度数.
  • 24. (2014·苏州) 如图,已知函数y=﹣ x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣ x+b和y=x的图象于点C、D.

    1. (1) 求点A的坐标;
    2. (2) 若OB=CD,求a的值.
  • 25. (2014·苏州) 如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.

  • 26. (2014·苏州) 如图,已知函数y= (x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.

    1. (1) 求△OCD的面积;
    2. (2) 当BE= AC时,求CE的长.
  • 27. (2014·苏州) 如图,已知⊙O上依次有A、B、C、D四个点, = ,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.

    1. (1) 若⊙O的半径为3,∠DAB=120°,求劣弧 的长;
    2. (2) 求证:BF= BD;
    3. (3) 设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.
  • 28. (2014·苏州) 如图,已知l1⊥l2 , ⊙O与l1 , l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1 , l2重合,AB=4 cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)

    1. (1) 如图①,连接OA、AC,则∠OAC的度数为°;
    2. (2) 如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1 , A1 , C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
    3. (3) 在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).
  • 29. (2014·苏州)

    如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.

    1. (1) 用含m的代数式表示a;

    2. (2) 求证: 为定值;

    3. (3) 设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息