当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2019年高考理数真题试卷(北京卷)

更新时间:2019-06-08 浏览次数:780 类型:高考真卷
一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。
二、填空题共6小题,每小题5分,共30分。
三、解答题共6小题,共80分。
  • 15. (2019·北京) 在△ABC中,a=3,b-c=2,cosB=- .

    (I)求b,c的值;

    (II)求sin(B-C)的值.

  • 16. (2019·北京) 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3。E为PD的中点,点F在PC上,且 .


    (I)求证:CD⊥平面PAD;

    (II)求二面角F-AE-P的余弦值;

    (III)设点G在PB上,且 .判断直线AG是否在平面AEF内,说明理由。

  • 17. (2019·北京) 改革开放以来,人们的支付方式发生了巨大转变。近年来,移动支付已成为主要支付方式之一。为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

    支付金额(元)

    支付方式

    (0,1000]

    (1000,2000]

    大于2000

    仅使用A

    18人

    9人

    3人

    仅使用B

    10人

    14人

    1人

    (I)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;

    (II)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;

    (III)已知上个月样本学生的支付方式在本月没有变化。现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元,根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

  • 18. (2019·北京) 已知抛物线C:x2=-2py经过点(2,-1).

    (I)求抛物线C的方程及其准线方程;

    (II)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.

  • 19. (2019·北京) 已知函数f(x)= x3-x2+x.

    (I)求曲线y=f(x)的斜率为1的切线方程;

    (II)当x∈[-2,4]时,求证:x-6≤f(x)≤x;

    (IlI)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a). 当M(a)最小时,求a的值.

  • 20. (2019·北京) 已知数列{an},从中选取第i1项、第i2项…第im项(i1<i2<…<im).若ai1<ai2<…<aim.则称新数列ai1 , ai2 , …,aim.为{an}的长度为m的递增子列.规定:数列{an}的任意一项都是{an}的长度为1的递增子列.

    (I)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;

    (II)已知数列{an}的长度为P的递增子列的末项的最小值为am0 , 长度为q的递增子列的末项的最小值为an0 , 若p<q,求证:am0<an0

    (III)设无穷数列{an}的各项均为正整数,且任意两项均不相等。若{an}的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s-1个(s=1.2.…),求数列{an}的通项公式。

微信扫码预览、分享更方便

试卷信息