当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江宁波市慈溪2019届九年级上学期数学期末考试试卷

更新时间:2024-07-13 浏览次数:444 类型:期末考试
一、单选题
二、填空题
三、解答题
    1. (1) 计算: .
    2. (2) 已知 ,求 的比.
  • 20. (2019·朝阳模拟) 在三个完全相同的小球上分别写上-2,-1,2三个数字,然后装入一个不透明的布袋内搅匀,从布袋中取出一个球,记下小球上的数字为 ,放回袋中再搅匀,然后再从袋中取出一个小球,记下小球上的数字为 ,组成一对数 .
    1. (1) 请用列表或画树状图的方法,表示出数对 的所有可能的结果;
    2. (2) 求直线 不经过第一象限的概率.
  • 21. (2019·南京模拟) 某公园的人工湖边上有一座山,山顶上有一直竖的建筑物 ,高为10米.某校数学兴趣小组的同学为了测量山的高度 ,在公园找了一水平地面,在 处测得建筑物点 (即山顶)的仰角为 ,沿水平方向前进20米到达 点,测得建筑物顶部 点的仰角为 ,求山的高度 .(结果精确到1米,参考数据:

  • 22. (2019九上·拱墅月考) 如图,已知A、B、C是⊙O上三点,其中 ,过点B画BD⊥OC于点D.

    1. (1) 求证:AB=2BD;
    2. (2) 若AB= ,CD=1,求图中阴影部分的面积.
  • 23. (2019九上·宁波期末) 如图,已知 斜边 上的中线,过点 的平行线,过点 的垂线,两线相交于点 .

    1. (1) 求证:
    2. (2) 若 ,求 的面积.
  • 24. (2019九上·宁波期末) 某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润 与投资金额 成正比例关系,如图1所示;种植花卉的利润 与投资金额 成二次函数关系,如图2所示.(注:利润与投资金额的单位均为万元)

    1. (1) 分别求出利润 关于投资金额 的函数关系;
    2. (2) 如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉的金额是 万元,求这位专业户能获取的最大总利润是多少万元?
  • 25. (2019九上·宁波期末) 四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的“相似对角线”.

    1. (1) 如图1,在四边形ABCD中,∠ABC=100°,∠ADC=130°,BD≠BC,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;
    2. (2) 如图2,已知格点△ABC,请你在正方形网格中画出所有的格点四边形ABCD,使四边形ABCD是以AC为“相似对角线”的四边形;(注:顶点在小正方形顶点处的多边形称为格点多边形)
    3. (3) 如图3,四边形AOBC中,点A在射线OP: (x≥0)上,点B在x轴正半轴上,对角线OC平分∠AOB,连接AB.若OC是四边形AOBC的“相似对角线”,SAOB=6 ,求点C的坐标.
  • 26. (2019九上·宁波期末) 如图1,抛物线 轴于点 和点 ,交 轴于点 ,一次函数 的图象经过点 ,点 是抛物线上第二象限内一点.

    1. (1) 求二次函数和一次函数的表达式;
    2. (2) 过点 轴的平行线交 于点 ,作 的垂线 于点 ,设点 的横坐标为 的周长为 .

      ①求 关于 的函数表达式;

      ②求 的周长的最大值及此时点 的坐标;

    3. (3) 如图2,连接 ,是否存在点 ,使得以 为顶点的三角形与 相似?若存在,直接写出点 的横坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息