当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省武汉市武昌区部分学校2019届九年级上学期数学期中考试...

更新时间:2019-10-15 浏览次数:489 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 18. (2019九上·江夏期中)

    如图,在⊙O中,AD=BC,求证:DC=AB.

  • 19. (2018九上·武昌期中) 已知二次函数y=ax2+bx+c,如表给出了y与x的部分对应值:

    x

    ﹣1

    0

    1

    2

    3

    y=ax2+bx+c

    n

    3

    0

    ﹣5

    ﹣12

    1. (1) 根据表格中的数据,试确定二次函数的解析式和n的值;
    2. (2) 抛物线y=ax2+bx+c与直线y=2x+m没有交点,求m的取值范围.
  • 20. (2018九上·武昌期中) 在平面直角坐标系中,已知A(2,0)、B(3,1)、C(1,3).

    1. (1) 画出△ABC沿x轴负方向平移2个单位后得到的△A1B1C1 , 并写出B1的坐标
    2. (2) 以A1点为旋转中心,将△A1B1C1逆时针方向旋转90°得△A1B2C2 , 画出△A1B2C2 , 并写出C2的坐标
    3. (3) 直接写出过B、B1、C2三点的圆的圆心坐标为.
  • 21. (2018九上·武昌期中) 如图1,⊙O是△ABC的外接圆,连接AO,若∠BAC+∠OAB=90°.

    1. (1) 求证:
    2. (2) 如图2,作CD⊥AB交于D,AO的延长线交CD于E,若AO=3,AE=4,求线段AC的长.
  • 22. (2018九上·武昌期中) 我市东湖高新技术开发区某科技公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价不低于100元,但不超过200元.设销售单价为x(元),年销售量为y(万件),年获利为w(万元)该产品年销售量y(万件)与产品售价x(元)之间的函数关系如图所示.

    1. (1) 直接写出y与x之间的函数关系式,并写出x的取值范围;
    2. (2) 求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?并求当盈利最大或亏损最小时的产品售价;
    3. (3) 在(2)的条件下.即在盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利不低于1370万元?若能,求出第二年的售价在什么范围内;若不能,请说明理由.
  • 23. (2018九上·武昌期中) 在△ABC和△ADE中,AB=AC,∠BAC=120°,∠ADE=90°,∠DAE=60°,F为BC中点,连接BE、DF,G、H分别为BE,DF的中点,连接GH.

    1. (1) 如图1,若D在△ABC的边AB上时,请直接写出线段GH与HF的位置关系 =.
    2. (2) 如图2,将图1中的△ADE绕A点逆时针旋转至图2所示位置,其它条件不变,(1)中结论是否改变?请说明理由;
    3. (3) 如图3,将图1中的△ADE绕A点顺时针旋转至图3所示位置,若C、D、E三点共线,且AE=2,AC= ,请直接写出线段BE的长.
  • 24. (2018九上·武昌期中) 抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.

    1. (1) 如图1,当t=0时,连接AC、BC,求△ABC的面积;
    2. (2) 如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;
    3. (3) 如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息