当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省宜昌市点军区2019届九年级上学期数学期中考试试卷

更新时间:2020-02-21 浏览次数:219 类型:期中考试
一、单选题
二、解答题
  • 17. (2018九上·点军期中) 已知抛物线的顶点是 A(2,﹣3),且交 y 轴于点 B(0,5),求此抛物线的解析式.
  • 18. (2018九上·点军期中) 如图,直线 y=﹣ x+4 与坐标轴分别交于 A,B 两点,把△AOB 绕点A 逆时针旋转 90°后得到△AO′B′.

    1. (1) 写出点 A 的坐标,点 B 的坐标;
    2. (2) 在方格中直接画出△AO′B′;
    3. (3) 写出点 O′的坐标;点 B′的坐标.
  • 19. (2018九上·点军期中) 如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?

  • 20. (2020八下·江阴月考) 已知x1 , x2 是关于x的一元二次方程x2-2(m+1)x+m2+5=0的两实数根.
    1. (1) 若(x1-1)(x2 -1)=28,求m的值;
    2. (2) 已知等腰△ABC的一边长为7,若x1 , x2恰好是△ABC另外两边的边长,求这个三角形的周长.
  • 21. (2018九上·点军期中) 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.

    1. (1) 若花园的面积为192m2 , 求x的值;
    2. (2) 若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
  • 22. (2018九上·点军期中)     2016年某园林绿化公司购回一批香樟树,全部售出后利润率为20%.
    1. (1) 求 2016年每棵香樟树的售价与成本的比值.
    2. (2) 2017年,该公司购入香樟树数量增加的百分数与每棵香樟树成本降低的百分数均为a,经测算,若每棵香樟树售价不变,则总成本将比2016年的总成本减少8万元;若每棵香樟树售价提高百分数也为a,则销售这批香樟树的利润率将达到4a.求a的值及相应的2017年购买香樟树的总成本.
  • 23. (2018九上·点军期中) 如图,在 Rt△POQ中,OP=OQ=4,M 是 PQ中点,把一个三角尺顶点放在点M处,以M为旋转心,旋转三角尺,三角尺的两直角边与 Rt△POQ的两直角边分别交于点A、B.

    1. (1) 求证:MA=MB;
    2. (2) 探究:在旋转三角尺的过程中,四边形AOBM的面积是否发生变化?为什么?
    3. (3) 连接 AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值.
  • 24. (2018九上·点军期中) 已知抛物线的表达式是y=ax2+(1﹣a)x+1﹣2a(a为不等于0的常数),上述抛物线无论a为何值始终经过定点A和定点B;A为x轴上的点,B为第一象限内的点.

    1. (1) 请写出A,B两点的坐标:A(,0);B();
    2. (2) 如图1,当抛物线与x轴只有一个公共点时,求a的值;
    3. (3) 如图2,当a<0时,若上述抛物线顶点是D,与x轴的另一交点为点C,且点A,B,C,D中没有两个点相互重合.

      求:①△ABC能否是直角三角形,为什么?

      ②若使得△ABD是直角三角形,请你求出a的值.(求出1个a的值即可)

微信扫码预览、分享更方便

试卷信息