2015年10月8日,厦门国际高尔夫球公开赛在海沧东方高尔夫球场举行.一参赛球员从高为20m的高处以某一初速度将高尔夫球水平击出,高尔夫球在空中沿水平方向运动20 m后,恰好落到球洞里.不计空气阻力的作用,重力加速度g取10m/s2 . 则高尔夫球( )
如图所示,单匝正方形闭合线框abcd由粗细均匀的绝缘棒制成,每边长为A,P是线框的中心,线框上均匀地分布着正电荷.现在线框下侧中点M处取下足够短的带电量为Q的一小段,将其沿PM连线向下移动 的距离到N处,若线框的其他部分的带电量与电荷分布保持不变,则此时P点的电场强度大小为( )
如图所示,将一光滑圆弧轨道固定竖直放置,其中A点为圆轨道的最低点,B点为圆水平直径与圆弧的交点.一个质量为m=1.256kg的物体静止于A点,现施加大小不变、方向始终和物体运动运动方向一致的外力F,使其沿圆周运动到达B点,随即撤去外力F,要使物体能在竖直圆轨道内维持圆周运动,π取3.14,g取10m/s2 , 外力F至少为( )
如图所示,理想变压器原线圈匝数n1=440,副线圈n2=20.在A、B端加上一交变电压μ=220 sin100πt(V),流过小灯泡的电流为0.3A,灯泡L正常发光,则以下说法中正确的是( )
如图所示,从斜面上某一位置先后由静止释放四个小球,相邻两小球释放的时间间隔为0.1s,某时刻拍下的照片记录了各小球的位置,测出xAB=5cm,xBC=10cm,xCD=15 cm.则( )
“磁单极子”是指只有S极或只有N极的磁性物质,其磁感线分布类似于点电荷的电场分布.假设地面附近空中有一N极磁单极子,在竖直平面内的磁感线如图所示,一质量为m、电荷量为q的带正电粒子正在该磁单极子上方附近做速度大小为v、半径为R的匀速圆周运动,其轨迹如虚线所示,轨迹平面为水平面,若不考虑地磁场的影响,重力加速度大小为g,则下列说法正确的是( )
用如图(a)所示的实验装置验证牛顿第二定律:
①某同学通过实验得到如图(b)所示的a﹣F图象,造成这一结果的原因是在平衡摩擦力时木板与水平桌面间的倾角(填“偏大”或“偏小”).
②该同学在平衡摩擦力后进行实验,小车在实际运动过程中所受的拉力砝码和盘的总重力(填“大于”“小于”或“等于”),为了便于探究、减小误差,应使小车质量M与砝码和盘的总质量m满足的条件.
电流表A1 , 量程3A; 电流表A2 , 量程0.6A; 电压表V1 , 量程15V; 电压表V2 , 量程3V;
滑动变阻器R1 , 最大阻值5Ω; 滑动变阻器R2 , 最大阻值3kΩ; 电源E,电动势5V; 开关S及导线若干
本实验中,滑动变阻器应选用(填“R1”或“R2“).连接方式应选择接法(填”限流“或”“分压”).为了提高实验精度,电流表应该选择(填“A1”或“A2”);电压表应选择(填(“V1”或“V2”)
该同学测量另一未知阻值的电阻时,先按图甲连接实验电路,然后再按图乙连接实验电路,发现电流表读数变化相对较大,电压表读数变化相对较小,则应选择图接法(填“甲”或“乙”)
如图所示,光滑圆弧轨道与光滑斜面在B点平滑连接,圆弧半径为R=0.4m,一半径很小、质量为m=0.2kg的小球从光滑斜面上A点由静止释放,恰好能通过圆弧轨道最高点D,斜面倾角为53°,求:
如图甲所示,金属极板A、B水平放置,极板长度为L,板间距为0.5L,两极板间的电势差为UAB随时间周期性变化的关系如图乙所示,变化周期为T,边界MN的右侧有方向垂直纸面向里的匀强磁场.一静止在两极板正中央的中性粒子,由于粒子内部的作用,在t=0时刻粒子突然分裂成两个带电微粒1、2,微粒1的质量为m1=2m,微粒2的质量为m2=m,其中微粒1带正电电荷量为q,速度方向水平向左,在t=T时刻从极板B的边缘离开,不计重力和分裂后两微粒间的相互作用,已知边界MN右侧磁场的磁感应强度大小为B= ,试求:
一定质量的理想气体被活塞封闭在气缸内,活塞质量为m、横截面积为S,可沿气缸壁无摩擦滑动并保持良好的气密性,整个装置与外界绝热,初始时封闭气体的温度为T1 , 活塞距离气缸底部的高度为H,大气压强为Po . 现用一电热丝对气体缓慢加热,若此过程中电热丝传递给气体的热量为Q,活塞上升的高度为 ,求:
Ⅰ.此时气体的温度;
Ⅱ.气体内能的增加量.
如图所示,一列向右传播简谐横波在t=0时刻恰好传到A点,波速大小v=0.6m/s,P质点的横坐标为x=1.26m,则下列说法正确的是( )
如图所示,真空中有一平行玻璃砖,一束单色光从光源P发出与界面成θ=30°角从ab面中点射入,测得折射角α=45°,在玻璃砖的右侧面ad射出,假设,光从光源P到ab面上的O点的传播时间和它在玻璃砖中传播的时间相等,已知光在真空中的传播速度c=3.0×108m/s,ab边长为 ×10cm,求:
①璃砖的折射率n;
②点光源P到O点的距离.