当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年江苏省盐城市高考数学三模试卷

更新时间:2024-07-12 浏览次数:1109 类型:高考模拟
一、填空题
二、解答题
  • 15. (2017·盐城模拟) 如图,在四棱柱ABCD﹣A1B1C1D1中,平面A1ABB1⊥底面ABCD,且∠ABC=

    1. (1) 求证:B1C1∥平面BCD1
    2. (2) 求证:平面A1ABB1⊥平面BCD1
  • 16. (2017·盐城模拟) 设△ABC面积的大小为S,且3 =2S.
    1. (1) 求sinA的值;
    2. (2) 若C= =16,求AC.
  • 17. (2017·盐城模拟) 一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示.ABCD是等腰梯形,AB=20米,∠CBF=α(F在AB的延长线上,α为锐角).圆E与AD,BC都相切,且其半径长为100﹣80sinα米.EO是垂直于AB的一个立柱,则当sinα的值设计为多少时,立柱EO最矮?

  • 18. (2017·盐城模拟) 已知A、F分别是椭圆C: + =1(a>b>0)的左顶点、右焦点,点P为椭圆C上一动点,当PF⊥x轴时,AF=2PF.

    1. (1) 求椭圆C的离心率;

    2. (2) 若椭圆C存在点Q,使得四边形AOPQ是平行四边形(点P在第一象限),求直线AP与OQ的斜率之积;

    3. (3) 记圆O:x2+y2= 为椭圆C的“关联圆”.若b= ,过点P作椭圆C的“关联圆”的两条切线,切点为M、N,直线MN的横、纵截距分别为m、n,求证: + 为定值.

  • 19. (2017·盐城模拟) 设函数f(x)=xex﹣ax2(a∈R).
    1. (1) 若函数g(x)= 是奇函数,求实数a的值;
    2. (2) 若对任意的实数a,函数h(x)=kx+b(k,b为实常数)的图象与函数f(x)的图象总相切于一个定点.

      ①求k与b的值;

      ②对(0,+∞)上的任意实数x1 , x2 , 都有[f(x1)﹣h(x1)][f(x2)﹣h(x2)]>0,求实数a的取值范围.

  • 20. (2017·盐城模拟) 已知数列{an},{bn}都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列{cn}.
    1. (1) 设数列{an},{bn}分别为等差、等比数列,若a1=b1=1,a2=b3 , a6=b5 , 求c20
    2. (2) 设{an}的首项为1,各项为正整数,bn=3n , 若新数列{cn}是等差数列,求数列{cn} 的前n项和Sn
    3. (3) 设bn=qn1(q是不小于2的正整数),c1=b1 , 是否存在等差数列{an},使得对任意的n∈N* , 在bn与bn+1之间数列{an}的项数总是bn?若存在,请给出一个满足题意的等差数列{an};若不存在,请说明理由.
  • 21. (2017·盐城模拟) 已知AB,CD是圆O两条相互垂直的直径,弦DE交AB的延长线于点F,若DE=24,EF=18,求OE的长.

  • 22. (2017·盐城模拟) 已知矩阵A= 所对应的变换T把曲线C变成曲线C1 + =1,求曲线C的方程.
  • 23. (2017·盐城模拟) 在极坐标系中,直线l的极坐标方程为ρcos(θ+ )=1.以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系,圆C的参数方程为 (θ为参数).若直线l与圆C相切,求r的值.
  • 24. (2017·盐城模拟) 已知a,b,c为正实数,且a+b+c=3,证明: + + ≥3.
  • 25. (2017·盐城模拟) 如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是边长为2的等边三角形,PC= ,M在PC上,且PA∥面BDM.

    1. (1) 求直线PC与平面BDM所成角的正弦值;
    2. (2) 求平面BDM与平面PAD所成锐二面角的大小.
  • 26. (2017·盐城模拟) 一只袋中装有编号为1,2,3,…,n的n个小球,n≥4,这些小球除编号以外无任何区别,现从袋中不重复地随机取出4个小球,记取得的4个小球的最大编号与最小编号的差的绝对值为ξn , 如ξ4=3,ξ5=3或4,ξ6=3或4或5,记ξn的数学期望为f(n).
    1. (1) 求f(5),f(6);
    2. (2) 求f(n).

微信扫码预览、分享更方便

试卷信息