当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年山东省临沂市中考数学模拟试卷(一)

更新时间:2024-07-12 浏览次数:1258 类型:中考模拟
一、选择题
二、填空题
三、三.解答题
  • 19. (2017·临沂模拟) 计算:﹣32+6cos45°﹣ (2﹣ )+| ﹣3|.
  • 20. (2017·临沂模拟) 为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:

    1. (1) 求扇形统计图中m的值,并补全条形统计图;
    2. (2) 在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?
    3. (3) 已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?
  • 21. (2017·临沂模拟) 如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.

    1. (1) 求证:四边形AECF是菱形;
    2. (2) 若∠B=30°,BC=10,求菱形AECF面积.
  • 22. (2017·临沂模拟) 如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.

    1. (1) 求证:MN是⊙O的切线;
    2. (2) 若∠BAC=120°,AB=2,求图中阴影部分的面积.
  • 23. (2017·临沂模拟) 光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:

    每台甲型收割机的租金

    每台乙型收割机的租金

    A地区

    1800

    1600

    B地区

    1600

    1200

    1. (1) 设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
    2. (2) 若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
    3. (3) 如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
  • 24. (2017·开江模拟)

    如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.

    1. (1) 请直接写出线段AF,AE的数量关系

    2. (2) 将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;

    3. (3) 在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.

  • 25. (2017·临沂模拟)

    如图,抛物线y=﹣ x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).

    1. (1) 求抛物线的表达式;

    2. (2) 在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

    3. (3) 点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

微信扫码预览、分享更方便

试卷信息