(Ⅰ)求进入决赛的人数;
(Ⅱ)若从该校学生(人数很多)中随机抽取两名,记X表示两人中进入决赛的人数,求X的分布列及数学期望;
(Ⅲ)经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.
如图,椭圆C: =1(a>b>0)的右顶点为A(2,0),左、右焦点分别为F1、F2 , 过点A且斜率为 的直线与y轴交于点P,与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1 .
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点P且斜率大于 的直线与椭圆交于M,N两点(|PM|>|PN|),若S△PAM:S△PBN=λ,求实数λ的取值范围.
(I)求曲线C2的直角坐标系方程;
(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.