如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是( )
如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是( )
将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是 ,则点C的坐标是( )
如图,正方形纸片ABCD的边长为4cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是( )
如图,矩形OABC的顶点A、C的坐标分别为(4,0)、(0,2),对角线的交点为P,反比例函数y= (k>0)的图象经过点P,与边BA、BC分别交于点D、E,连接OD、OE、DE,则△ODE的面积为.
如图,点A在函数y= (x>0)的图象上,点B在函数y= (x>0)的图象上,点C在x轴上.若AB∥x轴,则△ABC的面积为.
某校开展学生安全知识竞赛.现抽取部分学生的竞赛成绩(满分为100分,得分均为整数)进行统计,绘制了图中两幅不完整的统计图.根据图中信息,回答下列问题:
如图,在平面直角坐标系中,点B是反比例函数y= 的图象上任意一点,将点B绕原点O顺时针方向旋转90°到点A.
①求k的值;
②在反比例函数y= 的图象上是否存在一点P,使得△AOP是等腰三角形且∠AOP是顶角,若存在,写出点P的坐标;若不存在,请说明理由.
如图,已知直线a∥b,a、b之间的距离为4cm.A、B是直线a上的两个定点,C、D是直线b上的两个动点(点C在点D的左侧),且AB=CD=10cm,连接AC、BD、BC,将△ABC沿BC翻折得△A1BC.
①连接A1D,求证:A1D∥BC;
②若以点A1、C、B、D为顶点的四边形是矩形,求AC的长.