当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省济源县2020年数学中考评价检测试卷(一)

更新时间:2020-06-11 浏览次数:221 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 16. (2020·沈阳模拟) 先化简,再求值:(2﹣ )÷ ,其中x= ﹣3.
  • 17. (2020·济源模拟) 重庆一中开展了“爱生活•爱运动”的活动,以鼓励学生积极参与体育锻炼.为了解学生每周体育锻炼时间,学校在活动之前对八年级同学进行了抽样调査,并根据调査结果将学生每周的体育锻炼时间分为3小时、4小时、5小时、6小时、7小时共五种情况.小明根据调查结构制作了如图两幅统计图,请你结合图中所给信息解答下列问题:

    (整理数据)

    “爱生活•爱运动”的活动结束之后,再次抽查这部分学生的体育锻炼时间:

    一周体育锻炼时间(小时)

    3

    4

    5

    6

    7

    人数

    3

    5

    15

    a

    10

    活动之后部分学生体育锻炼时间的统计表

    (分析数据)

    平均数

    中位数

    众数

    活动之前锻炼时间(小时)

    5

    5

    5

    活动之后锻炼时间(小时)

    5.52

    b

    c

    请根据调查信息分析:

    1. (1) 补全条形统计图,并计算a=,b=小时,c=小时;
    2. (2) 小亮同学在活动之前与活动之后的这两次调查中,体育锻炼时间均为5小时,根据体育锻炼时间由多到少进行排名统计,请问他在被调查同学中体育锻炼时间排名靠前的是(填“活动之前”或“活动之后”),理由是
    3. (3) 已知八年级共2200名学生,请估算全年级学生在活动结束后,每周体育锻炼时间至少有6小时的学生人数有多少人?
  • 18. (2021九上·榆林期中) 如图,直线y1=3x﹣5与反比例函数y2= 的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.

    1. (1) 求k和n的值;
    2. (2) 求△AOB的面积;
    3. (3) 直接写出y1 y2时自变量x的取值范围.
  • 19. (2020·济源模拟) 如图,AB=BC,以BC为直径作⊙O,AC交⊙O于点E,过点E作EG⊥AB于点F,交CB的延长线于点G.

    1. (1) 求证:EG是⊙O的切线;
    2. (2) 若GF=2 ,GB=4,求⊙O的半径.
  • 20. (2020·济源模拟) 如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子与地面的夹角为45°,梯子底端与墙的距离CB=2米,若梯子底端C的位置不动,再将梯子斜靠在左墙,测得梯子与地面的夹角为60°,则此时梯子的顶端与地面的距离A'D的长是多少米?(结果保留根号)

  • 21. (2019八上·西安期中) 甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

    1. (1) 甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.
    2. (2) 若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.
    3. (3) 登山多长时间时,甲、乙两人距地面的高度差为50米?
  • 22. (2020·济源模拟) 如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.

    1. (1) 填空:∠AHC∠ACG;(填“>”或“<”或“=”)
    2. (2) 线段AC,AG,AH什么关系?请说明理由;
    3. (3) 设AE=m,

      ①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.

      ②请直接写出使△CGH是等腰三角形的m值.

  • 23. (2020·济源模拟) 已知抛物线y=x2+(2m﹣1)x﹣2m(m>0.5)的最低点的纵坐标为﹣4.

    1. (1) 求抛物线的解析式;
    2. (2) 如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,D为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;
    3. (3) 如图2,平移抛物线y=x2+(2m﹣1)x﹣2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点E、F(直线PE、PF不与y轴平行),求证:直线EF恒过某一定点.

微信扫码预览、分享更方便

试卷信息