当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广西南宁市2020年初中毕业班第一次适应性模拟测试数学试卷

更新时间:2020-07-11 浏览次数:309 类型:中考模拟
一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑.)
二、填空题(本大题共6小题,每小题3分,共18分。)
三、解答题(本大题共8小题,共66分,解答应写出文字说明,证明过程或演算步骤)
  • 21. (2020·南宁模拟) 在下面的网格中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(-3,0),(-1,-1)。

       

    1. (1) ①请在图中画出平面直角坐标系,并直接写出点A的坐标。
      ②将△ABC绕着坐标原点顺时针旋转90°,画出旋转后的△A'B'C'。
    2. (2) 求△A'B'C'的面积。
  • 22. (2020·南宁模拟) 2020年寒假期间,由于新冠肺炎疫情的爆发,檀华中学开展“停课不停学”的线上学习活动.学校教务处为了解九年级学生网上学习的情况,从该校九年级随机抽取20名学生,进行了每天网上学习的调查.数据如下(单位:时)

    3

    2.5

    0.6

    1

    2

    2

    2

    3.3

    2.5

    1.8

    2.5

    2.2

    3.5

    4

    1.5

    2.5

    3.1

    2.8

    3.3

    2.4

    整理数据:

    网上学习时间x(时)

    0<x≤1

    1<x≤2

    2<x≤3

    3<x≤4

    人数

    2

    5

    8

    5

    分析数据:

    统计量

    平均数

    中位数

    众数

    数值

    2.4

    m

    n

    根据以上信息,解答下列问题:

    1. (1) 上表中的中位数m的值为,众数n的值为
    2. (2) 用样本中的平均数估计该校九年级学生平均每人一个月(按30天计算)网上学习的时间。
    3. (3) 已知该校九年级学生有500名,估计每天网上学习时间超过2小时的学生人数。
  • 23. (2020·南宁模拟) 如图,在△ABC中,AD=BD=CD,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF。
    1. (1) 求证:△AEF≌△DEB;
    2. (2) 求证:四边形A DCF是菱形。
  • 24. (2020·南宁模拟) 某校的李,黄两位老师同住一小区,该小区与学校相距2400米。李老师从小区步行去学校,出发21分钟后黄老师再出发,黄老师从小区先骑公共一行车,途经学校又骑行若干米到达还车点后,立即跑步回学校。已知黄老师跑步的速度比李老师步行的速度每分钟快40米。设李老师步行的时间为x(分),图1中线段OA和折线B—C—D分别表示李老师、黄老师离开小区的路程y(米)与李老师步行时间x(分)的函数关系的图象;图2表示李、黄两位老师之间的距离s(米)与李老师步行时间x(分)的函数关系的图象(不完整)。

    根据图1和图2中所给信息,解答下列问题:

     

    1. (1) 求李老师步行的平均速度和黄老师出发时李老师离开小区的路程;
    2. (2) 求黄老师骑自行车的速度和黄老师到达还车点时李,黄老师之间的距离;
    3. (3) 在图2中,求黄老师到达学校时与李老师的距离并画出当35≤x≤40时s关于x的函数的大致图象,请标明关键点的坐标。(温馨提示:请画在答题卷相对应的图上)
  • 25. (2020·南宁模拟) 如图1所示,已知AB,CD是OD的直径,T是CD延长线的一点,⊙O的弦AF交CD于点E,且AE=EF,OA2=OE·OT。

     

    1. (1) 如图1,求证:BT是⊙O的切线;
    2. (2) 在图1中连接CB,DB,若 ,求tanT的值;
    3. (3) 如图2,连接DF交AB于点G,若BT=6 ,DT=6。求DG的长。
  • 26. (2020·南宁模拟) 如图,抛物线y=ax2+2ax+c的图象与x轴交于A,B两点(点A在点B的左边)AB=4,与y轴交于点C,OC=OA,点D为抛物线的顶点。

     

    1. (1) 求抛物线的解析式;
    2. (2) 点M(m,0)为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM,如图1,点P在点Q左边,当矩形PQNM的周长最大时,求m的值,并求出此时的△AEM的面积;
    3. (3) 如图2,已知H(0,-1),点G在抛物线上,连HG,直线HG⊥CF,足为F,若BF=BC,求点G的坐标。

微信扫码预览、分享更方便

试卷信息