当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江西省九江市2020年中考数学三模试卷

更新时间:2024-11-06 浏览次数:284 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 13. (2020·九江模拟)                
    1. (1) 先化简,再求值: ÷(1+ ),其中x=2020
    2. (2) 解不等式组
  • 14. (2020·九江模拟) 如图, 的对角线 相交于点 分别为 的中点.求证:

  • 15. (2020·九江模拟) 如图,是由6 6个边长为1的小正方形网格组成,每个小正方形的顶点称为格点,△ABC的三个顶点A,B,C均在格点上,请仅用无刻度的直尺,按下列要求画图.

    1. (1) 在图1中找一个格点D ,使以点A、B、C、D为顶点的四边形是平行四边形(画出一种情况即可)
    2. (2) 在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法)
  • 16. (2020·九江模拟) 现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小丽投放了两袋垃圾.

    1. (1) 写出小明投放的垃圾恰好是“厨余垃圾”的概率;
    2. (2) 用列表法或画树状图法求小丽投放的两袋垃圾是不同类的概率
  • 17. (2020九下·南昌月考) 如图,直线y=﹣x+2与反比例函数y= 的图象相交于点A(a,3),且与x轴相交于点B.

    1. (1) 求该反比例函数的表达式;
    2. (2) 写出直线y=﹣x+2向下平移2个单位的直线解析式,并求出这条直线与双曲线的交点坐标
  • 18. (2020·九江模拟) 近几年,随着电子产品的广泛应用,学生的近视发生率出现低龄化趋势,引起了相关部门的重视.某区为了了解在校学生的近视低龄化情况,对本区7-18岁在校近视学生进行了简单的随机抽样调查,并绘制了以下两幅不完整的统计图.

    请根据图中信息,回答下列问题:

    1. (1) 这次抽样调查中共调查了近视学生人;
    2. (2) 请补全条形统计图;
    3. (3) 扇形统计图中10-12岁部分的圆心角的度数是
    4. (4) 据统计,该区7-18岁在校学生近视人数约为10万,请估计其中7-12岁的近视学生人数.
  • 19. (2021九上·上饶期末) 如图,在△ABC中,AB=BC,以BC为直径作⊙ O交AC于点E,过点E作AB的垂线交AB于点F,交CB的延长线于点G.

    1. (1) 求证:EG是⊙O的切线;
    2. (2) 若BG=OB,AC=6,求BF的长.
  • 20. (2020·九江模拟) 如图1是一种纸巾盒,由盒身和圆弧盖组成,通过圆弧盖的旋转来开关纸巾盒.如图2是其侧面简化示意图,已知矩形 的长 ,宽 ,圆弧盖板侧面 所在圆的圆心 是矩形 的中心,绕点 旋转开关(所有结果保留小数点后一位).

      

    1. (1) 求 所在 的半径长及 所对的圆心角度数;
    2. (2) 如图3,当圆弧盖板侧面 从起始位置 绕点 旋转 时,求 在这个旋转过程中扫过的的面积.

      参考数据: 取3.14.

  • 21. (2020·九江模拟) 赣南脐橙果大形正,肉质脆嫩,风味浓甜芳香,深受大家的喜爱.某脐橙生产基地生产的礼品盒包装的脐橙每箱的成本为30元,按定价50元出售,每天可销售200箱.为了增加销量,该生产基地决定采取降价措施,经市场调研,每降价1元,日销售量可增加20箱.

    1. (1) 求出每天销售量y(箱)与销售单价x(元)之间的函数关系式;
    2. (2) 若该生产基地每天要实现最大销售利润,每箱礼品盒包装的脐橙应定价多少元?每天可实现的最大利润是多少?
  • 22. (2020·九江模拟) 边长为4的正方形ABCD中,点E是BC边上的一个动点,连接DE,交AC于点N,过点D作DF⊥DE,交BA的延长线于点F,连接EF,交AC于点M.

    1. (1) 判定△DFE的形状,并说明理由;
    2. (2) 设CE=x,△AMF的面积为y,求y与x之间的函数关系式;并求出当x为何值时y有最大值?最大值是多少?
    3. (3) 随着点E在BC边上运动,NA·MC的值是否会发生变化?若不变,请求出NA·MC的值;若变化,请说明理由.
  • 23. (2020九下·南昌月考) 定义:若两条抛物线在x轴上经过两个相同点,那么我们称这两条抛物线是“同交点抛物线”,在x轴上经过的两个相同点称为“同交点”,已知抛物线y=x2 +bx+c经过(﹣2,0)、( ﹣4,0),且一条与它是“同交点抛物线”的抛物线y=ax2 +ex+f经过点( ﹣3,3).
    1. (1) 求b、c及a的值;     
    2. (2) 已知抛物线y =﹣x2 +2x +3与抛物线yn= x2 x﹣n (n为正整数)    

      ①抛物线y和抛物线yn是不是“同交点抛物线”?若是,请求出它们的“同交点”,并写出它们一条相同的图像性质;若不是,请说明理由.     

      ②当直线y = x+ m与抛物线y、yn , 相交共有4个交点时,求m的取值范围.     

      ③若直线y =k(k <0)与抛物线y =﹣x2 +2x +3与抛物线yn = x2 x﹣n  (n为正整数)共有4个交点,从左至右依次标记为点A、点B、点C、点D,当AB =BC=CD时,求出k、n之间的关系式

微信扫码预览、分享更方便

试卷信息