当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省绍兴市新昌县2020年数学中考模拟试卷(5月)

更新时间:2024-07-13 浏览次数:470 类型:中考模拟
一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的正确选项,不选、多选、错选,均不给分)
二、填空题(本大题有6小题,每小题5分,共30分.)
三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程。)
    1. (1) 计算: +( -1)0-2cos45°。
    2. (2) 解分式方程:
  • 18. (2020·新昌模拟)    2020年突如其来的肺炎疫情,给我们的生活和学习带来了诸多不便.图1是2月1日至2月5日全国“新冠肺炎”疫情新增数据统计图,为了控制疫情蔓延扩散,国家全面落实疫情防控工作,举国上下众志成城,图2是3月5日至3月9日全国“新冠肺炎”疫情新增数据统计图,请根据统计图解答以下问题:

    1. (1) 写出2月3日全国新增确诊病例数,并计算3月5日至3月9日全国新增确诊病例数的平均数。
    2. (2) 对比两幅统计图中的数据,选择一个角度分析评价此次疫情控制情况。
  • 19. (2020·新昌模拟) 水龙头关闭不严会造成滴水,现用一个含有显示水量的圆柱形水杯接水做如图1的试验,研究水杯内盛水量w(L)与滴水时间t(h)的关系,根据试验数据绘制出如图2的函数图象,结合图象解答下列问题。

    1. (1) 求w与t之间的函数关系式。
    2. (2) 若杯子容积为2.2L,计算杯子最多可以接多少时间的水?
  • 20. (2020·新昌模拟) 某电工想换房间的灯泡,已知灯泡到地面的距离为2.65m,现有一架家用可调节式脚踏人字梯,其中踏板、地面都是水平的.梯子的侧面简化结构如图所示,左右支撑架长度相等,BD=1m。设梯子一边AD与地面的夹角为α,且α可调节的范围为60°≤α≤75°。当α=60°时,电工站在梯子安全档中最高一档踏板BE上的最大触及高度为2.60m。

    1. (1) 当α=60°时,求踏板BE离地面的高度BH.(精确到0.01m)
    2. (2) 调节角度,试判断电工是否可以换下灯泡,并说明理由。

      (参考数据: ≈1.732,sin75°≈0.966,cos75°≈0.259,tan75°≈3.732)

  • 21. (2020·新昌模拟) 如图,以点O为旋转中心,将线段AB按顺时针方向旋转α得到线段A'B',连结AA',BB'。

    1. (1) 比较∠OAA'与∠OBB'的大小,并说明理由。
    2. (2) 当α=45°时,若OA=3,OB=4;请你编制一个计算题(不标注新的字母),并解答(根据编出的问题层次,给不同的得分)。
  • 22. (2020·新昌模拟) 如果一个直角三角形的三边长分别为a-d,a,a+d,(a>d>0),则称这个三角形为均匀直角三角形。

    1. (1) 判定按照上述定义,下列长度的三条线段能组成均匀直角三角形的是(    )。
      A . 1,2,3 B . 1, ,2 C . 1, ,3 D . 3,4,5
    2. (2) 性质求证:任何均匀直角三角形的较小直角边与较大直角边的比是3:4。
    3. (3) 应用如图,在一块均匀直角三角形纸板ABC中剪一个矩形,且矩形的一边在AB上,其余两个顶点分别在BC,AC上,已知AB=50cm,BC>AC,∠C=90°,求剪出矩形面积的最大值。
  • 23. (2020·新昌模拟) 小明对教材“课题学习”中的“用一张正方形折出一个正八边形”的问题进行了认真的探索。他先把正方形ABCD沿对角线AC对折,再把∠BAC对折,使点B落在AC上,记为点E,然后沿CE的中垂线折叠,得到折痕PQ,如图1,类似地,折出其余三条折痕GH,IJ,KO,得到八边形GHIJKOPQ,如图2。

    1. (1) 求证:△CPQ是等腰直角三角形。
    2. (2) 若AB=a,求PQ的长。(用含a的代数式表示)
    3. (3) 我们把八条边长相等,八个内角都相等的八边形叫做正八边形.试说明八边形GHIJKOPQ是正八边形,请把过程补充完整。

      解:理由如下:

      ∴∠GQP=135°

      同理可得:∠QPO=∠POK=∠OKJ=∠KJI=∠JIH=∠IHG=∠HGQ=135°。

      ∴PQ=QG。

      同理可得:QG=GH=HI=IJ=JK=KO=PO=PQ

      ∴八边形GHIJKOPQ是正八边形。

  • 24. (2020·新昌模拟) 如图,在矩形ABCD中,已知AB=12,BC=16,点O是对角线AC的中点,点E是AD边上的动点,连结EO并延长交BC于点F,过O作GH⊥EF,分别交矩形的边于点G,H。

    1. (1) 当H,F,G,E四点分别分布在矩形ABCD的四条边上(不包括顶点)时,

      ①求证:四边形HFGE是菱形。

      ②求AE的取值范围。

    2. (2) 当四边形HFGE的面积为144时,求AE的长。

微信扫码预览、分享更方便

试卷信息