当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

安徽省芜湖市第二中学2019-2020学年九年级上学期数学期...

更新时间:2020-11-12 浏览次数:234 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 16. (2020九上·芜湖期末) 如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点. 的三个顶点 都在格点上,将 绕点A顺时针方向旋转90°,得到

    1. (1) 在正方形网格中,画出
    2. (2) 计算线段 在旋转到 的过程中所扫过区域的面积.(结果保留
  • 17. (2020九上·芜湖期末) 如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y= 的图象上,过点A的直线y=x+b交x轴于点B.

    1. (1) 求k和b的值;
    2. (2) 求△OAB的面积.
  • 18. (2023九上·江油月考)

    某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球  B.乒乓球C.羽毛球  D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

    1. (1) 这次被调查的学生共有 人;

    2. (2) 请你将条形统计图(2)补充完整;

    3. (3) 在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率.(用树状图或列表法解答)

  • 19. (2020九上·芜湖期末) 已知函数解析式为y=(m-2)
    1. (1) 若函数为正比例函数,试说明函数y随x增大而减小
    2. (2) 若函数为二次函数,写出函数解析式,并写出开口方向
    3. (3) 若函数为反比例函数,写出函数解析式,并说明函数在第几象限
  • 20. (2022八下·兰溪月考) 已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.
    1. (1) 如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;
    2. (2) 如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
    3. (3) 如果△ABC是等边三角形,试求这个一元二次方程的根.
  • 21. (2020九上·芜湖期末) 如图,已知等边△ABC,AB=12.以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.

    1. (1) 求证:DF是⊙O的切线;
    2. (2) 求FG的长;
    3. (3) 求△FDG的面积.
  • 22. (2020九上·芜湖期末) 如图,已知抛物线y= x2 x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.

    1. (1) 直接写出A、D、C三点的坐标;
    2. (2) 若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;
    3. (3) 设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.
  • 23. (2020九上·芜湖期末) 已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.

    1. (1) 若点D在边AC上,点E在边AB上且与点B不重合,如图1,

      求证:BM=DM且BM⊥DM;

    2. (2) 如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.

微信扫码预览、分享更方便

试卷信息