当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山西省孝义市2020-2021学年九年级上学期数学期中试卷

更新时间:2024-07-13 浏览次数:279 类型:期中考试
一、单选题
二、填空题
三、解答题
    1. (1) 求出抛物线 轴, 轴的交点坐标;
    2. (2) 已知抛物线的顶点坐标为 ,且经过点 ,求出该抛物线的函数关系表达式.
  • 17. (2020九上·孝义期中) 如图, 中, 交于点 .求证

  • 18. (2020九上·孝义期中) 利用如图所示正方形网格,解决下列问题.

    实践操作:

    1. (1) 将 以点 为中心,顺时针旋转90°得到 ,画出
    2. (2) 作出 关于 轴对称的

      观察发现:

    3. (3) 经过一次图形变化就可以得到 ,这种图形变化是(填“平移”“旋转”或“轴对称”).
  • 19. (2020九上·孝义期中) 阅读下列材料,完成相应任务:

    我们已经学习过利用“配方法、公式法、因式分解法”解一元二次方程,对于关于 的一元二次方程 ,还可以利用下面的方法求解.

    将方程整理,得 .        ……………………第1步

    变形得 .    ……………………第2步

    .                ……………………第3步

    于是得 ,即 .……第4步

    时,得 .……………………第5步

    .………………第6步

    时,该方程无实数解. ……………………………第7步

    学习任务:

    1. (1) 上述材料的第2步到第3步依据的一个数学公式是;以第4步到第5步将一元二次方程“降次”为两个一元一次方程,体现的数学思想主要是
    2. (2) 请用材料中提供的方法,解下列方程:

      ;②

  • 20. (2020九上·孝义期中) 图1所示是某广场地面示意图,该地面是由图2所示正方形地砖铺砌而成,某综合实践小组的同学测量图2所示地砖,得到 ,且 .于是他们抽象出如下两个数学问题:

    1. (1) 问题(1):若中间区域 的边 ,求 的长度;
    2. (2) 问题(2):若中间区域 的面积为 ,求 的长度.

      请你帮助他们解决上面的两个问题.

  • 21. (2020九上·孝义期中) 新冠疫情发生以来,中国蓬勃发展的消费市场、数字经济成为经济发展新的增长点,短视频和直播带货等新零售的快速崛起,让中国互联网经济持续火爆.吕梁某乡镇农贸公司以“吕梁有好礼,金秋消费季”为主题,开展直播带货活动,销售当地的一种特色农产品.公司在直播带货销售期间发现,该农产品每天的销售量 与销售单价 (元 )之间近似满足一次函数关系,其函数图象如图所示:

    1. (1) 求出 之间的函数关系式;
    2. (2) 若该农产品的成本价为10元/千克,该农贸公司每天销售该特产的利润为 元,求:当销售单价 为多少元/千克时,每天的销售利润最大?最大利润为多少元?
  • 22. (2020九上·孝义期中) 综合与实践

    问题情境

    从“特殊到一般”是数学探究的常用方法之,类比特殊图形中的数量关系和探究方法可以发现一般图形具有的普遍规律.

    如图1,在 中, 边上的中线, 上一点,将 以点 为旋转中心,逆时针旋转90°得到 的延长线交线段 于点 .探究线段 之间的数量关系.

    1. (1) 数学思考

      请你在图1中证明

    2. (2) 特例探究

      如图2,当 垂直于 时,求证:

    3. (3) 类比再探

      请判断(2)的结论在图1中是否仍然成立?若成立,请证明;若不成立,请说明理由.

  • 23. (2020九上·孝义期中) 综合与探究

    如图,抛物线 经过点 ,与 轴交于另一点 (点 在点 的右侧),点 是第四象限内抛物线上的动点.

    1. (1) 求抛物线的函数解析式及点 的坐标;
    2. (2) 若 的面积为 ,请直接写出 关于 的函数关系表达式,并求出当 的值为多少时, 的值最大?最大值为多少?
    3. (3) 是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息