当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

人教版2024-2025学年九年级数学上册开学考试模拟测试

更新时间:2024-11-06 浏览次数:0 类型:开学考试
一、选择题(共 10 小题, 每小题 3 分, 共 30 分)
二、填空题(共 6 小题, 每题 3 分, 共 18 分)
三、解答题(共 72 分)
  • 17. (2024九上·长沙开学考) 选择适当方法解一元二次方程:
    1. (1)
    2. (2)
  • 18. (2024九上·长沙开学考) 如图,平行四边形中, , 过点 , 交的延长线于点

       

    1. (1) 求证:四边形是菱形;
    2. (2) 连接 , 若 , 求的长.
  • 19. (2024九上·长沙开学考) 已知:y与x+2成正比例,且x=﹣4时,y=﹣2;

    (1)求y与x之间的函数表达式;

    (2)点P1(m,y1),P2(m﹣2,y2)在(1)中所得函数图象上,比较y1与y2的大小.

  • 20. (2024九上·长沙开学考) “青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想和党的十九大精神的青年学校行动,我校为了解学生某季度学习“青年大学习”的情况,从中随机抽取20位同学,并统计学习时间(学习时问用x表示,单位:分钟)收集数据如下:

    30   56   80   30   40   110   120   156   90   120

    58   80   120   140   70   84   10   20   100   86

    整理数据:按如下分段整理样本数据并补全表格.

    学习时间x(分钟)

    人数

    4

    a

    7

    b

    分析数据:补全下列表格中的统计量.

    平均数

    中位数

    众数

    80

    c

    d

    1. (1) 直接写出上述表格中的值;
    2. (2) 我校有1600名同学参加了此次调查活动,请估计学习时间不低于80分钟的人数是多少?
  • 21. (2024九上·长沙开学考) 已知二次函数y=ax2+bx+c的图象顶点坐标为(1,4),且经过点C(3,0).

    (1)求该二次函数的解析式;

    (2)当x取何值时,y随x的增大而减小?

    (3)当时,直接写出x的取值范围.

  • 22. (2024九上·云南月考) 中秋节前夕,某代理商从厂家购进某品牌月饼的两种礼盒,已知购进种月饼3盒,种月饼2盒共650元,购进4盒种月饼比购进3盒种多用300元.

    (1)求两种月饼礼盒的进价;

    (2)若该代理商购进该品牌的这两种礼盒月饼资金不超过8600元,购进盒数共70盒,销售时,销售一盒种礼盒月饼可获利100元,销售一盒种礼盒月饼可获利80元,并全部售完,请求出获利最多的进货方案以及最大利润.

  • 23. (2024九上·长沙开学考) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.

    (1)求之间的函数关系式;

    (2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

    (3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.

  • 24. (2024九上·长沙开学考) 已知在平面直角坐标系xOy中,抛物线C:过点M(4,4).

    (1)求c与a的关系.

    (2)当时,平移抛物线C得到新的抛物线仍过点M,并且对于上任意的两点T(),S(),当>>0时,总有 , 当<<0时,总有

    ①求抛物线解析式.

    ②若A、B是抛物线C’上不同的两点,记直线AM:;直线BM:;直线AB: , 当时,求证:k为定值

  • 25. (2024九上·长沙开学考) 如图,已知抛物线与x轴交于两点(点A在点B的左侧),与y轴交于点C.

    1. (1) 求抛物线的解析式;
    2. (2) 点D是第四象限内抛物线上的一个动点(与点C,B不重合),过点D作轴于点F,交直线于点E,连接 , 若 , 求出点D的坐标;
    3. (3) 若P为x轴上一动点,Q为抛物线上一动点,是否存在点P、Q,使得以点B,C,P,Q为顶点的四边形是平行四边形?若存在,请求出P的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息