当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2016年浙江省台州市中考数学试卷

更新时间:2024-07-12 浏览次数:1161 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 19. (2016·台州)

    如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.


    1. (1) 求证:△PHC≌△CFP;

    2. (2) 证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.

  • 20. (2016·台州)

    保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)


  • 21. (2021七下·贺兰期中)

    请用学过的方法研究一类新函数y= (k为常数,k≠0)的图象和性质.


    1. (1) 在给出的平面直角坐标系中画出函数y= 的图象;

    2. (2) 对于函数y= ,当自变量x的值增大时,函数值y怎样变化?

  • 22. (2016·台州)

    为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示.

    分组

    频数

    4.0≤x<4.2

    2

    4.2≤x<4.4

    3

    4.4≤x<4.6

    5

    4.6≤x<4.8

    8

    4.8≤x<5.0

    17

    5.0≤x<5.2

    5

    1. (1) 求所抽取的学生人数;

    2. (2) 若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率;

    3. (3) 请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.

  • 23. (2016·台州)

    定义:有三个内角相等的四边形叫三等角四边形.


    1. (1) 三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;

    2. (2) 如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.

    3. (3) 三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.

  • 24. (2016·台州)

    【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.

    【提出问题】输入一个实数,不断地进行“乘以常数k,再加上常数b”的运算,有什么规律?

    【分析问题】我们可用框图表示这种运算过程(如图a).

    也可用图象描述:如图1,在x轴上表示出x1 , 先在直线y=kx+b上确定点(x1 , y1),再在直线y=x上确定纵坐标为y1的点(x2 , y1),然后再x轴上确定对应的数x2 , …,以此类推.

    【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x,怎样变化.


    1. (1) 若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;

    2. (2) 若k>1,又得到什么结论?请说明理由;

    3. (3) ①若k=﹣ ,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2 , x3 , x4 , 并写出研究结论;

      ②若输入实数x1时,运算结果xn互不相等,且越来越接近常数m,直接写出k的取值范围及m的值(用含k,b的代数式表示)

微信扫码预览、分享更方便

试卷信息