当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2016年浙江省舟山、嘉兴中考数学试卷

更新时间:2024-07-12 浏览次数:1450 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 17. (2016·嘉兴) 计算:

    1. (1) |﹣4|×( ﹣1)0﹣2

    2. (2) 解不等式:3x>2(x+1)﹣1.

  • 18. (2016·嘉兴) 先化简,再求值:(1+ )÷ ,其中x=2016.

  • 19. (2016·嘉兴)

    太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)

    (参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

  • 20. (2016·嘉兴)

    为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)

    根据图中信息,解答下列问题:

    1. (1) 求被调查学生的总人数;

    2. (2) 若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;

    3. (3) 根据调查结果,请你给学校提一条合理化建议.

  • 21. (2016·嘉兴)

    如图,已知一次函数y1=kx+b的图象与反比例函数y2= 的图象交于点A(﹣4,m),且与y轴交于点B,第一象限内点C在反比例函数y2= 的图象上,且以点C为圆心的圆与x轴,y轴分别相切于点D,B


    1. (1) 求m的值;

    2. (2) 求一次函数的表达式;

    3. (3) 根据图象,当y1<y2<0时,写出x的取值范围.

  • 22. (2016·嘉兴)

    如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:

    1. (1) 如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;

    2. (2) 如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;

    3. (3) 在(2)条件下求出正方形CFGH的边长.

  • 23. (2021·郓城模拟)

    我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”


    1. (1) 概念理解:

      请你根据上述定义举一个等邻角四边形的例子;

    2. (2) 问题探究;

      如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;

    3. (3) 应用拓展;

      如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.

  • 24. (2016·嘉兴)

    小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图1中的实线所示,行驶路程s(m)与时间t(s)的关系如图2所示,在加速过程中,s与t满足表达式s=at2


    1. (1) 根据图中的信息,写出小明家到乙处的路程,并求a的值;

    2. (2) 求图2中A点的纵坐标h,并说明它的实际意义;

    3. (3) 爸爸在乙处等代理7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/s)与时间t(s)的关系如图1中的折线O﹣B﹣C所示,行驶路程s(m)与时间t(s)的关系也满足s=at2 , 当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.

微信扫码预览、分享更方便

试卷信息